Have a personal or library account? Click to login
Finite Length Triple Estimation Algorithm and its Application to Gyroscope MEMS Noise Identification Cover

Finite Length Triple Estimation Algorithm and its Application to Gyroscope MEMS Noise Identification

Open Access
|Apr 2023

References

  1. Samko SG, Kilbas AA, Maritchev OI. Fractional Integrals and Derivative. Theory and Applications. Gordon & Breach Sci. Publishers; 1987.
  2. Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differenctial Equations. New York, USA: John Wiley & Sons Inc.; 1993.
  3. Monje CA, Chen Y, Vinagre BM, Xue D, Fe-liu V. Fractional-order Systems and Controls.London. UK: Springer; 2010.
  4. Podlubny I. Fractional Differential Equations. Academic Press; 1999.
  5. Magin R, Ortigueira MD, Podlubny I, Trujillo J. On the fractional signals and systems. Signal Processing. 2011;91(3):350 371. Advances in Fractional Signals and Systems.
  6. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). USA: Elsevier Science Inc. 2006.
  7. West BJ. Fractional Calculus and the Future of Science. Entropy. 2021;23(12). https://www.mdpi.com/1099-4300/23/12/1566
  8. Anastassiou GA. Generalized Fractional Calculus. Springer. Cham. 2021.
  9. Yang XJ. General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC; 2019.
  10. Tarasov VE. Generalized Memory: Fractional Calculus Approach. Fractal and Fractional. 2018;2(4). https://www.mdpi.com/2504-3110/2/4/23.
  11. Sierociuk D, Dzielinski A, Sarwas G, Petras I, Podlubny I, Skovranek T. Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013;371(1990).
  12. Sakrajda P, Sierociuk D. Modeling Heat Transfer Process in Grid-Holes Structure Changed in Time Using Fractional Variable Order Calculus. In: Babiarz A, Czornik A, Klamka J, Niezabitowski M, editors. Theory and Applications of Non-integer Order Systems. Cham: Springer International Publishing. 2017: 297-306.
  13. Reyes-Melo ME, Martinez-Vega JJ, Guerrero-Salazar CA, Ortiz-Mendez U. Application of fractional calculus to modelling of relaxation phenomena of organic dielectric materials. In: Proceedings of International Conference on Solid Dielectrics. Toulouse. France: 2004.
  14. Dzielinski A, Sierociuk D, Sarwas G. Some applications of fractional order calculus. Bulletin of The Polish Academy of Sciences – Technical Sciences. 2010;58(4):583-92.
  15. Ortigueira MD, Val ério D. Fractional Signals and Systems. De Gruyter; 2020. https://doi.org/10.1515/9783110624588.
  16. Sheng H, Chen Y, Qiu T. Fractional Processes and Fractional-Order Signal Processing. Springer. London; 2012.
  17. Muresan CI, Birs IR, Dulf EH, Copot D, Miclea L. A Review of Recent Advances in Fractional-Order Sensing and Filtering Techniques. Sensors. 2021;21(17). Available from: https://www.mdpi.com/1424-8220/21/17/5920.
  18. Sierociuk D, Tejado I, Vinagre BM. Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Processing. 2011 MAR;91(3, SI):542-52.
  19. Sierociuk D. Fractional Kalman Filter algorithms for correlated system and measurement noises. Control and Cybernetics. 2013;42(2):471-90.
  20. Sierociuk D, Ziubinski P. Variable order fractional Kalman filters for estimation over lossy network. Lecture Notes in Electrical Engineering. 2015;320:285-94.
  21. Wyss W. Fractional noise. Foundations of Physics Letters. 1991;4: 235–246.
  22. Sierociuk D, Ziubinski P. Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circuits, Systems, and Signal Processing. 2014;33(12):3861-82. DOI: 10.1007/s00034-014-9835-0.
  23. Sierociuk D, Macias M. Triple Estimation of Fractional Variable Order, Parameters, and State Variables Based on the Unscented Fractional Order Kalman Filter. Sensors. 2021;21(23). Available from: https://www.mdpi.com/1424-8220/21/23/8159.
  24. Macias M, Sierociuk D, Malesza W. MEMS Accelerometer Noises Analysis Based on Triple Estimation Fractional Order Algorithm. Sensors. 2022;22(2).
  25. Stanislawski R, Latawiec KJ, Lukaniszyn M, Galek M. Time-domain approximations to the Grunwald-Letnikov difference with application to modeling of fractional-order state space systems. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR). 2015: 579-84.
  26. Stanislawski R, Hunek WP, Latawiec KJ. Finite approximations of a discrete-time fractional derivative. In: 2011 16th International Conference on Methods Models in Automation Robotics. 2011:142-5.
  27. Sierociuk D, Malesza W, Macias M. Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Applied Mathematical Modelling. 2015;39(13):3876-88. http://dx.doi.org/10.1016/j.apm.2014.12.009.
  28. Sierociuk D, Malesza W, Macias M. On the Recursive Fractional Variable-Order Derivative: Equivalent Switching Strategy, Duality, and Analog Modeling. Circuits, Systems, and Signal Processing. 2015;34(4):1077-113.
  29. Macias M, Sierociuk D. An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of International Conference on Fractional Differentiation and its Applications. Catania, Itally; 2014.
  30. Ziubinski P, Sierociuk D. Fractional order noise identification with application to temperature sensor data. In: Circuits and Systems (ISCAS), 2015 IEEE International Symposium on; 2015: 2333-6.
  31. Sierociuk D, Malesza W. Fractional variable order discrete-time systems, their solutions and properties. International Journal of Systems Science. 2017;48(12):3098-105.
  32. Haykin S. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.: New York, USA; 2001.
  33. Sierociuk D. Fractional Variable Order Derivative Simulink Toolkit; 2012. http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit
  34. Wu B, Cao X. Robust Attitude Tracking Control for Spacecraft with Quantized Torques. IEEE Transactions on Aerospace and Electronic Systems. 2017;11:1-1.
  35. Wang Y, Yang X, Yan H. Reliable Fuzzy Tracking Control of Near-Space Hypersonic Vehicle Using Aperiodic Measurement Information. IEEE Transactions on Industrial Electronics. 2019;66(12):9439-47.
  36. Sulochana S, Hablani H. Precision Munition Guidance and Moving-Target Estimation. Journal of Guidance, Control, and Dynamics. 2016;39:1-12.
  37. Xingling S, Shi Y, Wendong Z. Input-and-Measurement Event-Triggered Output Feedback Chattering Reduction Control for MEMS Gyroscopes. IEEE Transactions on Systems, Man,and Cybernetics: Systems. 2021.
  38. Xingling S, Shi Y, Wendong Z, Cao H, Jiawei L. Neurodynamic Approximation-Based Quantized Control with Improved Transient Performances for MEMS Gyroscopes: Theory and Experimental Results. IEEE Transactions on Industrial Electronics. 2020.
  39. Xingling S, Shi Y. Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth. IEEE Transactions on Cybernetics. 2022.
  40. Xingling S, Si H, Zhang W. Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization. Fuzzy Sets and Systems. 2020;411.
DOI: https://doi.org/10.2478/ama-2023-0025 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 219 - 229
Submitted on: Oct 31, 2022
Accepted on: Jan 4, 2023
Published on: Apr 25, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Michal Macias, Dominik Sierociuk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.