Have a personal or library account? Click to login
Experimental Analysis of Transverse Stiffness Distribution of Helical Compression Springs Cover

Experimental Analysis of Transverse Stiffness Distribution of Helical Compression Springs

Open Access
|Jan 2023

References

  1. 1. Cieplok G, Wójcik K. Conditions for self-synchronization of inertial vibrators of vibratory conveyors in general motion. Journal of Theoretical and Applied Mechanics. 2020;58(2): 513–524. https://doi.org/10.15632/jtam-pl/11902310.15632/jtam-pl/119023
  2. 2. Lee CM, Goverdovskiy VN. A multi-stage high-speed railroad vibration isolation system with ‘negative’ stiffness. Journal of Sound and Vibration. 2012;331(4): 914–921. https://doi.org/10.1016/j.jsv.2011.09.01410.1016/j.jsv.2011.09.014
  3. 3. Lu Z., Wang X., Yue K., Wei J., Yang Z. Coupling model and vibration simulations of railway vehicles and running gear bearings with multitype defects. Mechanism and Machine Theory. 2021;157: 104215.https://doi.org/10.1016/j.mechmachtheory.2020.10421510.1016/j.mechmachtheory.2020.104215
  4. 4. Vazquez-Gonzalez B., Silva-Navarro G. Evaluation of the Autopara-metric Pendulum Vibration Absorber for a Duffing System. Shock and Vibration. 2008;15( 3–4): 355–368. https://doi.org/10.1155/2008/82712910.1155/2008/827129
  5. 5. Yıldırım V. Exact Determination of the Global Tip Deflection of both Close-Coiled and Open-Coiled Cylindrical Helical Compression Springs having Arbitrary Doubly-Symmetric Cross-Sections. International Journal of Mechanical Sciences. 2016;115–116: 280–298. https://doi.org/10.1016/j.ijmecsci.2016.06.02210.1016/j.ijmecsci.2016.06.022
  6. 6. Paredes M. Enhanced Formulae for Determining Both Free Length and Rate of Cylindrical Compression Springs. Journal of Mechanical Design. 2016;138(2): 021404.https://doi.org/10.1115/1.403209410.1115/1.4032094
  7. 7. Liu H., Kim D. Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International Journal of Automotive Technology. 2009;10(4): 413–420. https://doi.org/10.1007/s12239-009-0047-810.1007/s12239-009-0047-8
  8. 8. Haringx J. A. On Highly Compressible Helical Springs and Rubber Rods, and their Application for Vibration-Free Mountings. Philips research reports. 1949;4: 49–80.
  9. 9. Wittrick W. H. On Elastic Wave Propagation in Helical Springs. International Journal of Mechanical Sciences. 1966;8(1): 25–47. https://doi.org/10.1016/0020-7403(66)90061-010.1016/0020-7403(66)90061-0
  10. 10. Jiang W., Jones W. K., Wang T. L., Wu K. H. Free Vibration of Helical Springs. Journal of Applied Mechanics.1991;58(1): 222–228.https://doi.org/10.1115/1.289715410.1115/1.2897154
  11. 11. Kobelev V. Effect of Static Axial Compression on the Natural Frequencies of Helical Springs. Multidiscipline Modeling in Materials and Structures. 2014;10: 379–398. https://doi.org/10.1108/MMMS-12-2013-007810.1108/MMMS-12-2013-0078
  12. 12. Mottershead J. E. Finite Elements for Dynamical Analysis of Helical Rods. International Journal of Mechanical Sciences. 1980;22(5): 267–283. https://doi.org/10.1016/0020-7403(80)90028-410.1016/0020-7403(80)90028-4
  13. 13. Taktak M., Dammak F., Abid S., Haddar M. A Finite Element for Dynamic Analysis of a Cylindrical Isotropic Helical Spring. Journal of Me-chanics of Materials and Structures. 2008;3(4): 641–658. http://doi.org/10.2140/jomms.2008.3.64110.2140/jomms.2008.3.641
  14. 14. Michalczyk K. Analysis of Lateral Vibrations of the Axially Loaded Helical Spring. Journal of Theoretical and Applied Mechanics. 2015;53(3): 745-755. https://doi.org/10.15632/jtam-pl.53.3.74510.15632/jtam-pl.53.3.745
  15. 15. Michalczyk K., Bera P. A Simple Formula for Predicting the First Natural Frequency of Transverse Vibrations of Axially Loaded Helical Springs. Journal of Theoretical and Applied Mechanics. 2019;57(3): 779–790. https://doi.org/10.15632/jtam-pl/11024310.15632/jtam-pl/110243
  16. 16. Berger C., Kaiser B. Results of Very High Cycle Fatigue Tests on Helical Compression Springs. International Journal of Fatigue. 2006;28(11): 1658–1663. https://doi.org/10.1016/j.ijfatigue.2006.02.04610.1016/j.ijfatigue.2006.02.046
  17. 17. Zhou C. et al. An Investigation of Abnormal Vibration – Induced Coil Spring Failure in Metro Vehicles. Engineering Failure Analysis. 2020;108: 104238. https://doi.org/10.1016/j.engfailanal.2019.10423810.1016/j.engfailanal.2019.104238
  18. 18. Sobaś M. Analysis of the Suspension of Freight Wagons Bogies Type Y25. Pojazdy Szynowe. 2014;3: 33–44.10.53502/RAIL-138984
  19. 19. Swacha P., Kotyk M., Ziółkowski W., Stachowiak R. Stand for testing the fatigue life of compression springs. Developments in Mechanical Engineering. 2021;17(9): 73–85. https://doi.org/10.37660/dme.2021.17.9.6
  20. 20. Czaban J., Szpica D. The didactic stand to test of spring elements in vehicle suspension. Acta Mechanica et Automatica. 2009;3(1): 33–35.
  21. 21. Gross S. Berechnung und Gestaltung von Metallfedern, Springer-Verlag Berlin Heidelberg GmbH. 1951.10.1007/978-3-662-01358-8
  22. 22. Wahl A. M. Mechanical Springs. Penton Publishing Company. 1944.
DOI: https://doi.org/10.2478/ama-2023-0011 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 95 - 103
Submitted on: Sep 27, 2022
Accepted on: Dec 13, 2022
Published on: Jan 14, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Robert Baran, Krzysztof Michalczyk, Mariusz Warzecha, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.