Have a personal or library account? Click to login
Assessment of the Impact of Wear and Tear of Rubber Elements in Tracked Mechanism on the Dynamic Loads of High-Speed Tracked Vehicles Cover

Assessment of the Impact of Wear and Tear of Rubber Elements in Tracked Mechanism on the Dynamic Loads of High-Speed Tracked Vehicles

Open Access
|Jan 2023

References

  1. 1. Djurić R, Milis Avljević V. Investigation of the relationship between reliability of track mechanism and mineral dust content in rocks of lignite open pits. Maintenance and Reliability. 2016; 18 (1): 142-150.10.17531/ein.2016.1.19
  2. 2. Grygier D. The impact of operation of elastomeric track chains on the selected properties of the steel cord wires. Maintenance and Reliability. 2017; 19 (1): 95-101.10.17531/ein.2017.1.13
  3. 3. Dudziński P, Kosiara A, Konieczny A. Wirtualne prototypowanie nowej generacji układu jezdnego na gąsienicach elastomerowych do zastosowań arktycznych. Postępy Nauki i Techniki. 2012; 14: 64-74.
  4. 4. Czabanowski R. Numeryczna analiza obciążeń wybranych elementów podwozia z gąsienicami elastomerowymi. Przegląd Mechaniczny. 2010; nr 7-8: 30-36.
  5. 5. Dziubak T. The effects of dust extraction on multi-cyclone and non-woven fabric panel filter performance in the air filters used in special vehicles. Maintenance and Reliability. 2016; 18 (3): 348-357.10.17531/ein.2016.3.5
  6. 6. Gniłka J, Mężyk A. Experimental identification and selection of dynamic properties of a high-speed tracked vehicle suspension system. Maintenance and Reliability. 2017; vol. 19 (1): 108-113.10.17531/ein.2017.1.15
  7. 7. Bogucki R. Badania prototypów nakładek elastomerowych na człony taśm gąsienicowych. Szybkobieżne Pojazdy Gąsienicowe. 2013; 1 (32): 37-46.
  8. 8. Rybak P. Tracked or Wheeled Chassis. Journal of Kones Powertrain and Transport. 2007; 14 (3):527-536.
  9. 9. Rybak P. Operating loads of impulse nature acting on the special equipment of the combat vehicles. Maintenance and Reliability. 2014; 16 (3): 347-353.
  10. 10. Campanelli M, Shabana AA, Choi JH. Chain vibration and dynamic stress in three-dimensional multibody tracked vehicles. Multibody System Dynamics. 1998; 2: 277–316.10.1023/A:1009758701296
  11. 11. Lee K. A numerical method for dynamic analysis of tracked vehicles of high mobility. KSME International Journal. 2000; 14 (10): 1028-1040.10.1007/BF03185057
  12. 12. Ma ZD, Perkins NC. A super-element of track-wheel-terrain interaction for dynamic simulation of tracked vehicles. Multibody System Dynamics. 2006; 15: 351–372.
  13. 13. Wallin M, Aboubakr AK, Jayakumar P,·Letherwood MD,·Gorsich DJ,·Hamed A,·Shaban A. A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dynamics. 2013; 74 (3): 783–800.10.1007/s11071-013-1005-6
  14. 14. Wang P, Rui X, Yu H. Study on dynamic track tension control for high-speed tracked vehicles. Mechanical Systems and Signal Processing. 2019; 132: 277-292. Available from: doi.org/10.1016/j.ymssp.2019.06.03110.1016/j.ymssp.2019.06.031
  15. 15. Wang Z, Lv H, Zhou X, Chen Z, Yang Y. Design and Modeling of a Test Bench for Dual-Motor Electric Drive Tracked Vehicles Based on a Dynamic Load Emulation Method. Sensor. 2018; 18: 1-20.10.3390/s18071993606851429933632
  16. 16. Dudziński P, Chołodowski J. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 1. A review of the state-of-the-art methods for modeling the internal resistance of tracked vehicles. Journal of Terramechanics. 2021; 96: 81-100. Available from: doi.org/10.1016/j.jterra.2021.02.00610.1016/j.jterra.2021.02.006
  17. 17. Chołodowski J, Dudziński P, Ketting M. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 3. A research on bending resistance of rubber tracks. Journal of Terramechanics. 2021; 97: 71-103. Available from: https://doi.org/10.1016/j.jterra.2021.02.00510.1016/j.jterra.2021.02.005
  18. 18. Liu W, Cheng K, Wang J. Failure analysis of the rubber track of a tracked transporter. Advances in Mechanical Engineering. 2018; 10 (7): 1–8.10.1177/1687814018789526
  19. 19. Gat G, Franco Y, Shmulevich I. Fast dynamic modeling for off-road track vehicles. Journal of Terramechanics. 2020; 92: 1-12. Available from: doi: 10.1016/j.jterra.2020.09.001.10.1016/j.jterra.2020.09.001
  20. 20. Burdziński Z. Teoria ruchu pojazdu gąsienicowego. Warszawa: WKŁ; 1972.
  21. 21. Mahalingam I, Padmanabhan C. A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics. 2021; 59(3): 433-457.10.1080/00423114.2019.1693048
  22. 22. Edwin P, Shankar K, Kannan K. Soft soil track interaction modeling in single rigid body tracked vehicle models. J Terramechanics. 2018; 77:1-14.10.1016/j.jterra.2018.01.001
  23. 23. Sandu C, Freeman JS. Military tracked vehicle model. Part I: Multi-body dynamics formulation.Int J Veh Syst Model Test. 2005; 1(1-3):48–67.10.1504/IJVSMT.2005.008572
  24. 24. Janarthanan B, Padmanabhan C, Sujatha C. Longitudinal dynamics of a tracked vehicle:simulation and experiment. J Terramechanics. 2012;49(2):63-72.10.1016/j.jterra.2011.11.001
  25. 25. Nabagło T, Jurkiewicz A, Kowal J. Modeling verification of an advanced torsional spring for tracked vehicle suspension in 2S1 vehicle model. Engineering Structures. 2021; 229: 111623.10.1016/j.engstruct.2020.111623
  26. 26. Ata WG, Oyadiji SO. An investigation into the effect of suspension configurations on the performance of tracked vehicles traversing bump terrains. Vehicle System Dynamics. 2014; 52(7): 1-25.
  27. 27. Sandu C, Freeman JS. Military tracked vehicle model. Part II: Case study. Int J Veh Syst Model Test. 2005;1(1-3):216-231.10.1504/IJVSMT.2005.008580
  28. 28. Budynas R, Nisbett K. Shigley’s Mechanical Engineering Design. McGraw Hill Education; 2019.
  29. 29. Borkowski W, Rybak P, Hryciów Z. Modele częściowe w analizie obciążeń struktur nośnych wozów bojowych. Biuletyn Wojskowej Akademii Technicznej. 2006; 55(4):221-232.
  30. 30. Hryciów Z; Małachowski J; Rybak P, Wiśniewski A. Research of Vibrations of an armoured Personnel Carrier Hull with FE Implementation. Materials. 2021; 14,6807:1-18. Available from: doi.org/10.3390/ma14226807.
  31. 31. Hebda M, Łopata A. Grafen – materiał przyszłości. Czasopismo Techniczne. Mechanika. 2012; R. 109, Z. 22, 8-M: 45-53.
DOI: https://doi.org/10.2478/ama-2023-0010 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 85 - 97
Submitted on: Oct 12, 2022
Accepted on: Dec 12, 2022
Published on: Jan 14, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Piotr Rybak, Zdzisław Hryciów, Bogusław Michałowski, Andrzej Wiśniewski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.