Have a personal or library account? Click to login
Analytical Approach for Vehicle Body Structures Behaviour Under Crash  at Aspects of Overloading and Crumple Zone Length Cover

Analytical Approach for Vehicle Body Structures Behaviour Under Crash at Aspects of Overloading and Crumple Zone Length

Open Access
|Jan 2023

References

  1. 1. Łabęcka M., Żaba C., Lorkiewicz-Muszyńska D., Świderski P., Mularski A., Kołowski J. Fatal injuries of organs situated in the neck caused by fastened seat belts. Arch. Med. Sąd. Kryminol. 2011;LXI: 170-175 (in Polish).
  2. 2. Dubois D., Zellmer H., Markiewicz E. Experimental and numerical analysis of seat belt bunching phenomenon. International Journal of Impact Engineering. 2009; 36: 763-774. https://doi.org/10.1016/j.ijimpeng.2008.11.00610.1016/j.ijimpeng.2008.11.006
  3. 3. Reeda M.P., Ebert S. M., Sherwood Ch.P., Klinich K.D., Manary M.A. Evaluation of the static belt fit provided by belt-positioning booster seats. Accident Analysis and Prevention. 2009;41: 598-607. https://doi.org/10.1016/j.aap.2009.02.00910.1016/j.aap.2009.02.00919393812
  4. 4. Houten R.V., Reagan I. J., Hilton B.W. Increasing seat belt use: Two field experiments to test engineering-based behavioral interventions. Transportation Research, Part F. 2014;23:133-146. https://doi.org/10.1016/j.trf.2013.12.01810.1016/j.trf.2013.12.018
  5. 5. Joszko K., Wolański W., Gzik M., Żuchowski A. Experimental and modelling investigation of effective protection the passengers in the rear seats during car accident. Modelowanie Inżynierskie. 2015;25 (56): 48-57 (in Polish).
  6. 6. Kang H.-S., Cho H.-Y., Lee S.-K., Shon J.-H. Development of an index for the sound and haptic quality of a seat belt. Applied Acoustics. 2015;99: 145-154. https://doi.org/10.1016/j.apacoust.2015.06.00610.1016/j.apacoust.2015.06.006
  7. 7. Li Z., Yu Q., Zhao X., Yu M., Shi P., Yan C. Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Advances in Mechanical Engineering. 2017;9(8): 1-21. https://doi.org/10.1177/168781401770280610.1177/1687814017702806
  8. 8. Liang C., Wang C., J., Nguyen V., B., English M., Mynors D. (2017). Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns. Thin-Walled Structures. 2017;112: 83-91. https://doi.org/10.1016/j.tws.2016.12.02010.1016/j.tws.2016.12.020
  9. 9. Kotełko M. Load capacity and failure mechanisms of thin-walled structures, WNT Warszawa, Poland (in Polish); 2017.
  10. 10. Kent R.W., Purtsezov S.V., Pilkey W.D. Limiting performance analysis of a seat belt system with slack. International Journal of Impact Engineering. 2007;34: 1382-1395. https://doi.org/10.1016/j.ijimpeng.2006.07.00210.1016/j.ijimpeng.2006.07.002
  11. 11. Sahraeia E., Digges K., Marzougui D., Roddis K. High strength steels, stiffness of vehicle front-end structure, and risk of injury to rear seat occupants. Accident Analysis and Prevention. 2014; 66: 43-54. https://doi.org/10.1016/j.aap.2014.01.00410.1016/j.aap.2014.01.00424509321
  12. 12. Saunders J.W., Molino L.N., Kuppa S., McKoy F.L., Performance of seating systems in a FMVSS no. 301 rear impact crash test. Computer Systems Management, Inc. USA, Paper Number 248.
  13. 13. Sugimoto T., Kadotani Y., Ohmura S. The offset crash test – a comparative analysis of test methods. Honda R&D Co., Ltd. Japan, Paper Number 98-S l-0-08, 1998.
  14. 14. Witteman, W. J. Improved vehicle crashworthiness design by control of the energy absorption for different collision situations. Technische Universiteit Eindhoven, 1999. https://doi.org/10.6100/IR518429
  15. 15. Jawad, Saad A.W. Compatibility study in frontal collisions – mass and stiffness ratio. ACME Department, University of Hertfordshire, United Kingdom, Paper Number 98-Sl-O-14; 1998.
  16. 16. Sadeghipour E. A New Approach to Assess and Optimize the Frontal Crash Compatibility of Vehicle Structures with Focus on the European Fleet of Passenger Car. PhD thesis, Technical University of Munich; 2017.
  17. 17. Barbat S., Li X., Prasad P. Vehicle to vehicle front to side crash analysis using a CAE based methodology. Passive Safety Research and Advanced Engineering, Ford Motor Company, United States, Paper Number 07-0347; 2007
  18. 18. Subramaniam K., Mukul Verma M., Rajesh Nagappala R., Ronald Tedesco R., Louis Carlin L. Evaluation of stiffness matching concepts for vehicle safety improvement. General Motors Corporation, USA, Paper Number 07-0112.
  19. 19. Żuchowski A. The use of energy methods at the calculation of vehicle impact velocity. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2015;68(2): 85-111.
  20. 20. Leibowitz B. Method for Computing Motor Vehicle Crash Energy Based on Detailed Crush Data and Stiffness Values. PhD thesis. Johns Hopkins University, USA; 2014.
  21. 21. Neades J.G.J. Developments in Road Vehicle Crush Analysis for Forensic Collision Investigation. PhD thesis. De Montfort University; 2011.
  22. 22. Khattab A. Abd El-R. Investigation of an adaptable crash energy management system to enhance vehicle crashworthiness. PhD thesis. Concordia University Montreal, Quebec, Canada; 2010.
  23. 23. McCoy M.L., Lankarani H.M. Determination of the crush stiffness coefficients of a typical aftermarket frontal protective guard used in light trucks and vans with comparisons between guard stiffness and frontal vehicle crush coefficients. Proc. IMechE Vol. 220 Part D: J. Automobile Engineering. 2006;220(8): 1073-1084. https://doi.org/10.1243/09544070D1900310.1243/09544070D19003
  24. 24. Chen W. Crashworthiness Optimization of Ultralight Metal Structures. PhD thesis. Massachusetts Institute of Technology; 2001.
  25. 25. Hollowell W.T., Gabler H. C., Stucki S.L., Summers S., Hackney J.R. Updated review of potential test procedures for FMVSS no. 208 NHTSA 1999.
  26. 26. Brell E. Simplified models of vehicle impact for injury mitigation. PhD thesis. School of Urban Development. Queensland University of Technology; 2005.
  27. 27. Lukoševičius V., Keršys R., Keršys A., Makaras R., Jablonskytė J. (2020). Three and four mass models for vehicle front crumple zone. Transport Problems. 2020;15(3). doi: 10.21307/tp-2020-035.10.21307/tp-2020-035
  28. 28. Pahlavani M., Marzbanrad J. Crashworthiness study of a full vehicle-lumped model using parameters optimization. International Journal of Crashworthiness, 2015;20(6): 573-591. http://dx.doi.org/10.1080/13588265.2015.106891010.1080/13588265.2015.1068910
  29. 29. Munyazikwiye B.B., Karimi H.R., Robbersmyr K.G. Optimization of Vehicle-to-Vehicle Frontal Crash Model Based on Measured Data Using Genetic Algorithm. IEEE Accesss. Digital Object Identifier. 2017;5: 3131-3138. doi: 10.1109/ACCESS.2017.267135710.1109/ACCESS.2017.2671357
  30. 30. Wiacek Ch., Nagabhushana V., Rockwell T., Summers S., Zhao L., Collins L.A. Evaluation of frontal crash stiffness measures from the U.S. new car assessment program. Paper Number 15-0257; 2015.
  31. 31. Kim S., Cho H. A study on the stiffness change of a passenger car’s front frame body before and after a collision accident. International Journal of Mechanical Engineering and Robotics Research. 2021;10(5): 270-275. doi: 10.18178/ijmerr.10.5.270-27510.18178/ijmerr.10.5.270-275
  32. 32. Prochowski L., Ziubiński M., Pusty T. Experimental and analytic determining of the characteristics of deformation and side stiffness of a motor car body based on results of side-impact crash tests. International Automotive Conference (KONMOT2018). IOP Conf. Series: Materials Science and Engineering 421 (2018) 032025. doi:10.1088/1757-899X/421/3/03202510.1088/1757-899X/421/3/032025
  33. 33. Obst M., Kurpisz D., Paczos P. The experimental and analytical investigations of tension phenomenon of thin-walled cold formed channel beams subjected to four-point bending. Thin Walled Structures. 2016; 106: 179-186. https://doi.org/10.1016/j.tws.2016.05.00210.1016/j.tws.2016.05.002
  34. 34. Obst M., Rodak M., Paczos P. Limit load of cold formed thin-walled nonstandard channel beams. Journal of Theoretical and Applied Mechanics. 2016;54(4): 1369-1377. doi: 10.15632/jtam-pl.54.4.136910.15632/jtam-pl.54.4.1369
  35. 35. Mitchell R.J., Bambach M.R., Toson B. Injury risk for matched front and rear seat car passengers by injury severity and crash type: An exploratory study. Accident Analysis and Prevention. 2015;82: 171-179. https://doi.org/10.1016/j.aap.2015.05.02310.1016/j.aap.2015.05.02326087473
  36. 36. Bunketorp O.B., Elisson L.K. Cervical status after neck sprains in frontal and rear-end car impacts injury. Int. J. Care Injured. 2012; 43: 423-430. https://doi.org/10.1016/j.injury.2011.05.02010.1016/j.injury.2011.05.02021683356
  37. 37. Szeszycki A. Project of the collision energy absorber for the Formula Student vehicle, Engineering Thesis Poznan University of Technology (in Polish); 2020.
  38. 38. Matlock D.K., Speer J.G., de Moor E. Recent AHSS developments for automotive applications: processing, microstructures, and properties. Addressing Key Technology Gaps in Implementing Advanced High-Strength Steels for Automotive Light Weighting February 9-10, 2012, USCAR Offices, Southfield, MI.
  39. 39. Chatterjee D. Behind the development of advanced high strength steel (AHSS) including stainless steel for automotive and structural applications - an overview. Materials Science and Metallurgy Engineering, 2017; 4(1): 1-15. doi: 10.12691/msme-4-1-1
DOI: https://doi.org/10.2478/ama-2023-0008 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 68 - 75
Submitted on: Aug 22, 2022
Accepted on: Dec 1, 2022
Published on: Jan 14, 2023
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dariusz Kurpisz, Maciej Obst, Tadeusz Szymczak, Radosław Wilde, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.