Have a personal or library account? Click to login
Investigation of Driving Stability of a Vehicle–Trailer Combination Depending on the Load’s Position Within the Trailer Cover

Investigation of Driving Stability of a Vehicle–Trailer Combination Depending on the Load’s Position Within the Trailer

Open Access
|Jan 2023

References

  1. 1. Gerlici J, Sakhno V, Yefymenko A, Verbitskii V, Kravchenko A, Kravchenko K. The stability analysis of two-wheeled vehicle model. MATEC Web of Conference. 2018; 157: 1-10. https://doi.org/10.1051/matecconf/20181570100710.1051/matecconf/201815701007
  2. 2. Aldughaiyem A, Salamah YB, Ahmad I. Control Design and Assessment for a revesing tractor – trailer system using a cascade controller. Applied Sciences [Internet]. 2021 Nov 11; 11(22): 10634. Available form: https://doi.org/10.3390/app11221063410.3390/app112210634
  3. 3. Mikhailov AV, Zhigulskaya AI, Kasakov YA. Modeling of peat tractor semi-trailer motion. International Conference Aviation Engineering and Transportatin (AviaEnT 2020), September 21-26, 2020, Irkutsk, Russia. https://doi.org/10.1088/1757-899X/1061/1/01202610.1088/1757-899X/1061/1/012026
  4. 4. Milani S, Unlusoy YS, Marzbani H, Jazar RN. Semitrailer Steering control for improved articulated vehicle manoeuvrability and stability. Nonlinear Engineering. 2019; 8(1): 568-581. https://doi.org/10.1515/nleng-2018-012410.1515/nleng-2018-0124
  5. 5. Emheisen MA, Emirler MT, Ozkan B. Lateral stability control of articulated heavy vehicles based on active steering system. International Journal of Mechanical Engineering and Robotics Research. 2022; 11(8): 575-582. https://doi.org/10.18178/ijmerr.11.8.575-58210.18178/ijmerr.11.8.575-582
  6. 6. Chen Y, Peterson AW, Zhang C, Ahmdian M. A simulation-based comparative study on lateral characteristics of trucks with double and triple trailers. International Journal of Vehicle Safety. 2019; 11(2): 136-157. https://doi.org/10.1504/IJVS.2019.10185710.1504/IJVS.2019.101857
  7. 7. Mataras DA, Luque P, Alonso M. Phase plane analysis applied to non-explicit multibody vehicle models. Multibody System Dynamics. 2022; 56(2): 173-188. https://doi.org/10.1007/s11044-022-09846-910.1007/s11044-022-09846-9
  8. 8. Hussain K, Stein W, Day AJ. Modelling commercial vehicle handling and rolling stability. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2005; 219(4): 357-369. https://doi.org/10.1243/146441905X4870710.1243/146441905X48707
  9. 9. Marienka P, Francak M, Jagelcak J, Synak F. Comparison of braking characteristics of solo vehicle and selected types of vehicle combinations. Horizons of Autonomous Mobility in Europe (LOGI 2019), November 14-15, 2019, České Budějovice, Czech Republic. https://doi.org/10.1016/j.trpro.2020.02.00710.1016/j.trpro.2020.02.007
  10. 10. Damjanovic M, Zeljko S, Stanimirovic D, Tanackov I, Marinkovic D. Impact of the number of vehicles on traffic safety: Multiphase modeling. Facta Universitatis Series: Mechanical Engineering. 2022; 20(1): 177-197. https://doi.org/10.22190/FUME220215012D10.22190/FUME220215012D
  11. 11. Skrucany T, Vrabel J, Kazimir P. The influence of the cargo weight and its position on the braking characteristics of light commercial vehicles. Open Engineering, 2020; 10(1): 154-165. https://doi.org/10.1515/eng-2020-002410.1515/eng-2020-0024
  12. 12. Vrabel J, Skrucany T, Bartuska L, Koprna J. Movement analysis of the semitrailer with the tank-container at hard braking – the case study. 4th International Conference of Computational Methods in Engineering Science (CMES 2019), November 21-23, 2019, Kazimierz Dolny, Poland. https://doi.org/10.1088/1757-899X/710/1/01202510.1088/1757-899X/710/1/012025
  13. 13. Mattas K, Albano G, Riccardo D, Galassi MCh, Suarez-Bertoa R, Sandor V, Ciuffo B. Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions. Accident Analysis and Prevention. 2022; 174: 1-16. https://doi.org/10.1016/j.aap.2022.10674310.1016/j.aap.2022.106743937897335700684
  14. 14. Gechev T, Mruzek M, Barta D. Comparison of real driving cycles and consumed braking power in suburban Slovakian driving. 9th International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies (Bultrans 2017), September 11-13, 2017, Sozopol, Bulgaria. https://doi.org/10.1051/matecconf/20171330200310.1051/matecconf/201713302003
  15. 15. Yevtushenko, A., Kuciej, M., Topczewska, K.: Analytical model for investigation of the effect of friction power on temperature in the disk brake. Advances in Mechanical Engineering. 2017; 9(12): 1-12. https://doi.org/10.1177/168781401774409510.1177/1687814017744095
  16. 16. Yevtushenko A, Kuciej M, Topczewska K. Analytical model to investigate distributions of the thermal stresses in the pad and disk for different temporal profiles of friction power. Advances in Mechanical Engineering. 2018; 10(10): 1-10. https://doi.org/10.1177/168781401880667010.1177/1687814018806670
  17. 17. Koch S, Koppen E, Grabner N, von Wagner U. On the influence of multiple equilibrium positions on brake noise. Facta Universitatis Series: Mechanical Engineering. 2021; 19(4): 613-632. https://doi.org/10.22190/FUME210106020K10.22190/FUME210106020K
  18. 18. Bai Z, Lu Y, Li Y. Method of improving lateral stability by using additional yaw moment of semi-trailer. Energies [Internet]. 2020 Nov 30; 13(23):6317. Available from: https://doi.org/10.3390/en1323631710.3390/en13236317
  19. 19. Lack T, Gerlici J. Analysis of vehicles dynamic properties from the point of view of passenger comfort. Communication – Scientific Letters of the University of Zilina. 2008; 10(3): 10-18. https://doi.org/10.26552/com.C.2008.3.10-1810.26552/com.C.2008.3.10-18
  20. 20. Rigatos G, Siano P, Wira P, Busawon K, Binns R. A nonlinear H-infinity control approach for autonomous truck and trailer systems. Unmanned Systems. 2020; 8(1): 49-69. https://doi.org/10.1142/S230138502050004110.1142/S2301385020500041
  21. 21. Road traffic act No. 8/2009.
  22. 22. Wang D, Chen S, Zhang W, Du D. The roll stability analysis of semi-trailer based on the wheel force. Computers, Materials and Continua. 2022; 71(1): 1837-1848. https://doi.org10.32604/cmc.2022.02303310.32604/cmc.2022.023033
  23. 23. Chajkin AP, Dobretsov RY, Sokolova VA, Teterina IA, Kamenchukov AV, Tiknonov EA, Bazykin VI. Mathematical model for assessing lateral stability of articulated tracked vehicles. 3rd International Scientific Conference on Applied Pysics, Information Technologies and Engineering (APITECH-III 2021), September 24 – October 3, 2021, Krasnoyarsk, Russia. https://doi.org/10.1088/1742-6596/2094/4/04200510.1088/1742-6596/2094/4/042005
  24. 24. Voros I, Takacs D. The effects of trailer towing on the dynamics of a lane-keeping controller. ASME 2020 Dynamic Systems and Control Conference. Virtual, Online, 2020. https://doi.org/10.1115/DSCC2020-314110.1115/DSCC2020-3141
  25. 25. Vasko M, Leitner B, Saga M. Computational fatigue damage prediction of the lorry frames under stochastic random excitation. Communication – Scientific Letters of the University of Žilina. 2010; 12(4): 62-67.10.26552/com.C.2010.4.62-67
  26. 26. Lot R, Massaro M. A symbolic approach to the multibody modeling of road vehicles. International Journal of Applied Mechanics [Internet]. 2017 Jul 1; 9(5):1750068. Available from: https://doi.org/10.1142/S175882511750068510.1142/S1758825117500685
  27. 27. Xing J. Determination of instability critical speed of articulated vehicle on ramp section based on response surface method. International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology (MEMAT 2021), April 23-25, 2021, Guilin, China. https://doi.org10.1088/1742-6596/1939/1/012075
  28. 28. Zhang Q, Su Ch, Zhou Y, Zhang Ch, Ding J, Wang Y. Numerical investigation on handling stability of a heavy tractor semi-trailer under crosswind. Applied Sciences [Internet]. 2020 May 26; 10(11):3672. Available from: https://doi.org/10.3390/app1011367210.3390/app10113672
  29. 29. Jagelcak J, Gnap J, Kuba O, Frnda J, Kostrzewski M. Determination of turning radius and lateral acceleration of vehicle by GNSS/INS sensor. Sensors [Internet]. 2022 Mar 16; 22(6):2298. Available from: https://www.mdpi.com/1424-8220/22/6/229810.3390/s22062298895085935336468
  30. 30. Guo R, Siquan L, Zulin H, Xu L. Study on Vehicle-road interaction for autonomous driving. Sustainability [Internet]. 2022 Sep 14; 14(18):11693. Available from: https://www.mdpi.com/2071-1050/14/18/1169310.3390/su141811693
  31. 31. Yang Z, Wang L, Liu F, Li Z. Nonlinear dynamic analysis of constant-speed and variable-speed of autonomous vehicle passing uneven road. Journal of Vibroengineering. 2022; 24(4): 726-744. https://doi.org/10.21595/jve.2022.2225010.21595/jve.2022.22250
  32. 32. Lack T, Gerlici J. Analysis of vehicles dynamic properties from: The point of view of passenger comfort. Communications – Scientific Letters of the University of Žilina. 2008; 10(3): 10-18.10.26552/com.C.2008.3.10-18
  33. 33. Gerlici J, Lack T, Ondrova Z. Evaluation of comfort for passengers of railway vehicles. Communications – Scientific Letters of the University of Žilina. 2007; 9(4): 44-49.10.26552/com.C.2007.4.44-49
  34. 34. De Bernardis, M., Rini, G., Bottiglione, F., Hartavi, A.E., Sorniotti, A.: On nonlinear model predictive direct yaw moment control for trailer sway mitigation. Vehicle System Dynamics. 2022; in press: 1-27. https://doi.org/10.1080/00423114.2022.205435210.1080/00423114.2022.2054352
  35. 35. Zhou S, Zhang S. Study on tractor semi-trailer roll stability control. The Open Mechanical Engineering Journal. 2014; 8(A238): 238-242. https://doi.org/10.2174/1874155x0140801023810.2174/1874155X01408010238
  36. 36. Koszałka G, Zniszczynski A. A simulation study on the manoeuverability of a large size semitrailer. Transport. 2016; 31(4): 408-415. https://doi.org/10.3846/16484142.2015.105722410.3846/16484142.2015.1057224
  37. 37. Pacejka H. Modeling of the as a vehicle component with applications. CCG-Course V2.01, Carl-Cranz-Gesellschaft. 1982.
  38. 38. Rill G. Sophisticated but quite simple contact calculation for handling tire models. Multibody System Dynamics. 2019; 45(2): 131-153. https://doi.org/10.1007/s11044-018-9629-410.1007/s11044-018-9629-4
  39. 39. Nunic ZB, Ajanovic M, Miletic D, Lojic R. Determination of the rolling resistance coefficient under different traffic conditions. Facta Universitatis Series: Mechanical Engineering. 2020; 18(4): 653-664. https://doi.org/10.22190/FUME181116015N10.22190/FUME181116015N
  40. 40. Istenik R, Barta D, Mucha W. Influence of the wheels on the automobile dynamics. Komunikacie. 2004; 6(1): 26-28.10.26552/com.C.2004.1.26-28
  41. 41. Car trailer fail – car accident in Poland. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=mfLnLwFcSBc
  42. 42. Tongue weight safety demonstration. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=w9Dgxe584Ss
DOI: https://doi.org/10.2478/ama-2023-0007 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 60 - 67
Submitted on: Jun 27, 2022
|
Accepted on: Nov 27, 2022
|
Published on: Jan 14, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ján Dižo, Miroslav Blatnický, Paweł Droździel, Rafał Melnik, Jacek Caban, Adam Kafrik, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.