Have a personal or library account? Click to login
Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel Cover

Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel

Open Access
|Dec 2022

References

  1. 1. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. European Journal of Mechanics-B/Fluids. 2015; 49(A):89-99.10.1016/j.euromechflu.2014.08.004
  2. 2. Sheikholeslami M, Ashorynejad H, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids. 2016; 214:86-95.10.1016/j.molliq.2015.11.052
  3. 3. Mishra P, Tiwari A, Chhabra R. Effect of orientation on forced convection heat transfer from a heated cone in Bingham plastic fluids. International Communications in Heat and Mass Transfer. 2018; 93:34-40.10.1016/j.icheatmasstransfer.2018.02.018
  4. 4. Kim SK. Forced convection heat transfer for the fully-developed laminar flow of the cross fluid between parallel plates. Journal of Non-Newtonian Fluid Mechanics. 2020; 276:104226-1042231.10.1016/j.jnnfm.2019.104226
  5. 5. Peyghambarzadeh S, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Annals of Nuclear Energy. 2013; 53:401-410.10.1016/j.anucene.2012.07.037
  6. 6. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. Journal of Thermal Analysis and Calorimetry. 2019; 138(2):1461-1476.10.1007/s10973-019-08168-x
  7. 7. Farooq U, Waqas H, Khan MI, Khan SU, Chu Y-M, Kadry S. Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source. Alexandria Engineering Journal. 2021; 60(3):3073-3086.10.1016/j.aej.2021.01.050
  8. 8. Xiong P-Y, Hamid A, Chu Y-M, Khan MI, Gowda R, Kumar RN, et al. Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point. The European Physical Journal Plus. 2021; 136(3):1-22.
  9. 9. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. International journal of thermal sciences. 2009; 48(2):391-400.10.1016/j.ijthermalsci.2008.10.004
  10. 10. Heidary H, Kermani M. Effect of nano-particles on forced convection in sinusoidal-wall channel. International Communications in Heat and Mass Transfer. 2010; 37(10):1520-1527.10.1016/j.icheatmasstransfer.2010.08.018
  11. 11. Minakov A, Lobasov A, Guzei D, Pryazhnikov M, Rudyak VY. The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Applied Thermal Engineering. 2015; 88:140-148.10.1016/j.applthermaleng.2014.11.041
  12. 12. Ma Y, Mohebbi R, Rashidi M, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Physics of Fluids. 2018; 30(3):032001.10.1063/1.5022060
  13. 13. Ramin M, Erfan K, Omid A. A, Davood T, Mehdi B, Milad G. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. Journal of Thermal Analysis and Calorimetry 2018; 134(3):2305–2315.10.1007/s10973-018-7671-3
  14. 14. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. International Journal of Heat and Mass Transfer. 2018; 117:425-435.10.1016/j.ijheatmasstransfer.2017.10.043
  15. 15. Lotfi R, Saboohi Y, Rashidi A. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. International Communications in Heat and Mass Transfer. 2010; 37(1):74-78.10.1016/j.icheatmasstransfer.2009.07.013
  16. 16. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics reports. 2019; 790:1-48.10.1016/j.physrep.2018.11.004
  17. 17. Almohammadi H, Vatan SN, Esmaeilzadeh E, Motezaker A, Nokhosteen A. Experimental investigation of convective heat transfer and pressure drop of Al2O3/water nanofluid in laminar flow regime inside a circular tube. International Journal of Mechanical and Mechatronics Engineering. 2012; 6(8):1750-1755.
  18. 18. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International communications in heat and mass transfer. 2006; 33(4):529-535.10.1016/j.icheatmasstransfer.2006.01.005
  19. 19. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/ Water hybrid Newtonian nanofluid using experimental data. Physica A: Statistical Mechanics and its Applications. 2019; 525:741-751.10.1016/j.physa.2019.03.118
  20. 20. Abbasi A, Farooq W, Tag-ElDin ESM, Khan SU, Khan MI, Guedri K, et al. Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4) based blood flow via tapered complex wavy curved channel with slip features. Micromachines. 2022; 13(9):1415-1430.10.3390/mi13091415950569736144038
  21. 21. Mehrez Z, El Cafsi A.Forced convection magneto-hydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step. Journal of Thermal Analysis and Calorimetry. 2019; 135(2): 1417-1427.10.1007/s10973-018-7541-z
  22. 22. Hussain S, Ahmed SE. Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe3O4-water ferrofluid. Journal of Magnetism and Magnetic Materials. 2019; 484:356-366.10.1016/j.jmmm.2019.04.040
  23. 23. Khan MI, Kiyani M, Malik M, Yasmeen T, Khan MWA, Abbas T. Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties. Alexandria Engineering Journal. 2016; 55(3):2367-2673.10.1016/j.aej.2016.04.037
  24. 24. Chu Y-M, Khan MI, Khan NB, Kadry S, Khan SU, Tlili I, et al. Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis. International Communications in Heat and Mass Transfer. 2020; 118:104893.10.1016/j.icheatmasstransfer.2020.104893
  25. 25. Peng X, Peterson G. Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer. 1996; 39(12):2599-2608.10.1016/0017-9310(95)00327-4
  26. 26. Toghraie D, Mashayekhi R, Arasteh H, Sheykhi S, Niknejadi M, Chamkha AJ. Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. International Journal of Numerical Methods for Heat and Fluid Flow. 2019; 30(4):1759-1814.10.1108/HFF-11-2018-0628
  27. 27. Moraveji A, Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. International Journal of Heat and Mass Transfer. 2017; 113:432-443.10.1016/j.ijheatmasstransfer.2017.05.095
  28. 28. Togun H. Laminar CuO–water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle. Applied Nanoscience. 2016; 6(3):371-378.10.1007/s13204-015-0441-7
  29. 29. Alamyane AA, Mohamad AA. Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method. Computers and Mathematics with Applications. 2010; 59(7):2421-2451.10.1016/j.camwa.2009.08.070
  30. 30. Anas RQ, Mussa MA. Maximization of heat transfer density from a single-row cross-flow heat exchanger with wing-shaped tubes using constructal design. Heat Transfer. 2021; 50(6):5906-5924.10.1002/htj.22155
  31. 31. Yang M-H, Yeh R-H, Hwang J-J. Forced convective cooling of a fin in a channel. Energy Conversion and Management. 2010; 51(6):1277-1286.10.1016/j.enconman.2010.01.003
  32. 32. Maia CRM, Aparecido JB, Milanez LF. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section. International Journal of Thermal Sciences. 2006; 45(11):1066-1072.10.1016/j.ijthermalsci.2006.02.001
  33. 33. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. Journal of Thermal Analysis and Calorimetry. 2019; 136(3):1333-1345.10.1007/s10973-018-7826-2
  34. 34. Fanambinantsoa HV, Rakotomanga FdA, Randriaza-namparany MA. Étude numérique de la convection forcée dans un canal rectangulaire horizontal muni d’une protubérance sinusoïdale. Afrique Scince. 2016; 12(6):353-364.
  35. 35. Buyruk E, Karabulut K. Enhancement of heat transfer for plate fin heat exchangers considering the effects of fin arrangements. Heat Transfer Engineering. 2018; 39 (15): 1392-1404.10.1080/01457632.2017.1366238
  36. 36. Dixit A, Patil AK. Heat transfer characteristics of grooved fin under forced convection. Heat Transfer Engineering. 2015; 36(16): 1409-1416.10.1080/01457632.2015.1003726
  37. 37. Ferhi M, Djebali R. Heat Transfer Appraising and Second Law Analysis of Cu-Water Nanoliquid Filled Microchannel: Slip Flow Regime. Romanian Journal of Physics. 2022; 67:605-630.
  38. 38. Mejri I, Mahmoudi A, Abbassi MA, Omri A. Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technology.2014; 266:340-353.10.1016/j.powtec.2014.06.054
  39. 39. Atashafrooz M, Sheikholeslami M, Sajjadi H, Delouei AA. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. Journal of Magnetism and Magnetic Materials. 2019; 478:216-226.10.1016/j.jmmm.2019.01.111
  40. 40. Ferhi M, Djebali R, Mebarek-Oudina F, Abu-Hamdeh NH, Abboudi S. Magnetohydrodynamic Free Convection Through Entropy Generation Scrutiny of Eco-Friendly Nanoliquid in a Divided L-Shaped Heat Exchanger with Lattice Boltzmann Method Simulation. Journal of Nanofluids.2022; 11(1):99-112.10.1166/jon.2022.1819
  41. 41. Djebali R, Jaouabi A, Naffouti T, Abboudi S. Accurate LBM appraising of pin-fins heat dissipation performance and entropy generation in enclosures as application to power electronic cooling. International Journal of Numerical Methods for Heat and Fluid Flow. 2019; 30(2):742-768.10.1108/HFF-01-2019-0006
  42. 42. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids. 1997; 9(6):1591-1598.10.1063/1.869307
  43. 43. Mohamad A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes: Springer Science and Business Media; 2011:70.10.1007/978-0-85729-455-5
  44. 44. Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of chemical physics. 1952; 20(4):571-579.10.1063/1.1700493
  45. 45. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer. 2005; 48(13):2652-2661.10.1016/j.ijheatmasstransfer.2005.01.029
  46. 46. Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. International Journal of Heat and Mass Transfer. 2017; 114:1054-1066.10.1016/j.ijheatmasstransfer.2017.06.135
  47. 47. Tang G, Tao W, He Y. Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method. International journal of modern physics B. 2003; 17(1):183-187.10.1142/S0217979203017485
  48. 48. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chemical Engineering and Processing-Process Intensification. 2018; 125:56-66.10.1016/j.cep.2018.01.004
DOI: https://doi.org/10.2478/ama-2022-0050 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 417 - 431
Submitted on: Sep 17, 2022
Accepted on: Nov 6, 2022
Published on: Dec 15, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Rached Miri, Mohamed A. Abbassi, Mokhtar Ferhi, Ridha Djebali, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.