Have a personal or library account? Click to login
Application of the Deformation Fracture Criterion to Cracking of Disc Specimens with a Central Narrow Slot Cover

Application of the Deformation Fracture Criterion to Cracking of Disc Specimens with a Central Narrow Slot

Open Access
|Nov 2022

References

  1. 1. Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids. 1974;22(1):17-26.10.1016/0022-5096(74)90010-6
  2. 2. Savruk MP, Kazberuk A. Stress Concentration at Notches. Springer International Publishing Switzerland; 2017.10.1007/978-3-319-44555-7
  3. 3. Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering. 2013;46(2):269-87.10.1007/s00603-012-0257-7
  4. 4. Garcıa VJ, Marquez CO, Zuniga-Suarez AR, Zuniga-Torres BC, VillaltaGranda LJ. Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights. International Journal of Concrete Structures and Materials. 2017;11(2):343-63.10.1007/s40069-017-0194-7
  5. 5. Libatskii L, Kovchik S. Fracture of discs containing cracks. Mater Sci. 1967;3(4):334-9.10.1007/BF00714960
  6. 6. Yarema SY, Krestin GS. Determination of the modulus of cohesion of brittle materials by compressive tests on disc specimens containing cracks. Mater Sci. 1967;2(1):7-10.10.1007/BF00715157
  7. 7. Yarema SY, Krestin GS. Limiting equilibrium of a disk with a diametral crack. Int Appl Mech. 1968;4(7):55-8.
  8. 8. Yarema SY. Stress state of disks with cracks, recommended as specimens for investigating the resistance of materials to crack development. Mater Sci. 1977;12(4):361-74.10.1007/BF00716287
  9. 9. Yarema SY, Ivanitskaya G, Maistrenko A, Zboromirskii A. Crack development in a sintered carbide in combined deformation of types I and II. Strength of Materials. 1984;16(8):1121-8.10.1007/BF01530284
  10. 10. Atkinson C, Smelser R, Sanchez J. Combined mode fracture via the cracked Brazilian disk test. Int J Fract. 1982;18(4):279-91.10.1007/BF00015688
  11. 11. Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test. J Eng Mater Technol. 1978;100:175-82.10.1115/1.3443468
  12. 12. Zhou S. Fracture Propagation in Brazilian Discs with Multiple Preexisting Notches by Using a Phase Field Method. Periodica Polytechnica Civil Engineering. 2018;62(3):700-8.
  13. 13. Xiankai B, Meng T, Jinchang Z. Study of mixed mode fracture toughness and fracture trajectories in gypsum interlayers in corrosive environment. Royal Society Open Science. 2018;5(1).10.1098/rsos.171374579291829410841
  14. 14. Tang SB. Stress intensity factors for a Brazilian disc with a central crack subjected to compression. International Journal of Rock Mechanics and Mining Sciences. 2017;93:38 45.10.1016/j.ijrmms.2017.01.003
  15. 15. Seitl S, Miarka P. Evaluation of mixed mode I/IIfracturetoughnessof C 50/60 from Brazilian disc test. Frattura ed Integrità Strutturale. 2017;11(42):119-27.10.3221/IGF-ESIS.42.13
  16. 16. Ayatollahi MR, Aliha MRM. On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics. 2008;75(16):4631 4641.10.1016/j.engfracmech.2008.06.018
  17. 17. Ayatollahi MR, Aliha MRM. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational Materials Science. 2007;38(4):660 670.10.1016/j.commatsci.2006.04.008
  18. 18. Atahan HN, Tasdemir MA, Tasemir C, Ozyurt N, Akyuz S. Mode I and mixed mode fracture studies in brittle materials using the Brazilian disc specimen. Mater Struct. 2005;38:305-12.10.1007/BF02479295
  19. 19. Dong S. Theoretical analysis of the effects of relative crack length and loading angle on the experimental results for cracked Brazilian disk testing. Engineering Fracture Mechanics. 2008;75(8):2575 2581.10.1016/j.engfracmech.2007.09.008
  20. 20. Wang QZ, Gou XP, Fan H. The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption. Engineering Fracture Mechanics. 2012;82:1 8.10.1016/j.engfracmech.2011.11.001
  21. 21. Ayatollahi MR, Aliha MRM. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. International Journal of Solids and Structures. 2009;46(2):311 321.10.1016/j.ijsolstr.2008.08.035
  22. 22. Savruk MP, Kazberuk A. Problems of fracture mechanics of solid bodies with V-shaped notches. Mater Sci. 2009;45(2):162-80.10.1007/s11003-009-9170-y
  23. 23. Leonov MY, Panasyuk VV. Development of a nanocrack in a solid. Prikl Mekh. 1959;5(4):391-401.
  24. 24. Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100-4.10.1016/0022-5096(60)90013-2
  25. 25. Kosior-Kazberuk M, Kazberuk A, Bernatowicz A. Estimation of Cement Composites Fracture Parameters Using Deformation Criterion. Materials. 2019;12(24):4206.10.3390/ma12244206
  26. 26. Panasyuk VV, Savruk MP. Model for plasticity bands in elastoplastic failure mechanics. Mater Sci. 1992;28(1):41-57.
  27. 27. Savruk MP. Two-dimensional problems of elasticity for bodies with cracks (in Russian). Naukova Dumka, Kiev; 1981.
  28. 28. Muskhelishvili NI. Some Basic Problems of the Mathematical Theory of Elasticity. 2nd ed. Noordhoff International Publishing, Leyden; 1977.10.1007/978-94-017-3034-1
  29. 29. Sidi A. A new variable transformation for numerical integration. H Brass H and G Hammerlin, editors, Numerical integration IV. 1993:359-73.10.1007/978-3-0348-6338-4_27
  30. 30. Johnston PR. Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals. Int J Numer Meth Eng. 1999;45:1333-48.10.1002/(SICI)1097-0207(19990810)45:10<1333::AID-NME632>3.0.CO;2-Q
  31. 31. Belotserkovsky SM, Lifanov IK. Method of discrete vortices. CRC Press LLC, Boca Raton; 1993.
  32. 32. Savruk MP, Osiv PN, Prokopchuk IV. Numerical analysis in plane problems of the crack theory (in Russian). Naukova Dumka, Kiev; 1989.
  33. 33. Rice JR. The location of plastic deformation. Theor Appl Mech. 1976;1:20720.
  34. 34. Benthem JP. Stresses in the region of rounded corners. Int J Solids Struct. 1987;23(2):239-52.10.1016/0020-7683(87)90057-6
  35. 35. Savruk MP, Kazberuk A. Relationship between the stress intensity and stress concentration factors for sharp and rounded notches. Mater Sci. 2006;42(6):725-38.10.1007/s11003-006-0140-3
DOI: https://doi.org/10.2478/ama-2022-0047 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 393 - 398
Submitted on: Oct 9, 2022
Accepted on: Oct 20, 2022
Published on: Nov 15, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Andrzej Kazberuk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.