Have a personal or library account? Click to login
Selection of the Heat Transfer Coefficient Using Swarming Algorithms Cover

Selection of the Heat Transfer Coefficient Using Swarming Algorithms

Open Access
|Oct 2022

References

  1. 1. Gosselin L, Tye-Gingras M, Mathieu-Potvin F. Review of utilization of genetic algorithms in heat transfer problems. International Journal of Heat and Mass Transfer. 2009; 52(9-10):2169-2188.10.1016/j.ijheatmasstransfer.2008.11.015
  2. 2. Kot V. Solution of the classical Stefan problem: Neumann condition. Journal of Engineering Physics and Thermophysics. 2017; 90(4): 889-917.10.1007/s10891-017-1638-2
  3. 3. Chen J, Yu W, Tian J, Chen L, Zhou Z. Image contrast enhancement using an artificial bee colony algorithm. Swarm and Evolutionary Computation. 2018; 38:287-294.10.1016/j.swevo.2017.09.002
  4. 4. Zhao X, Xuan D, Zhao K, Li Z. Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery. Journal of Energy Storage. 2020; 32:101789.10.1016/j.est.2020.101789
  5. 5. Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review. 2014; 42:21-57.10.1007/s10462-012-9328-0
  6. 6. Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report. Kayseri/Türkiye: Erciyes University, Engineering Faculty, Computer Engineering Department; 2005. Report No.: TR-06.
  7. 7. Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing. 2008; 8(1):687-697.10.1016/j.asoc.2007.05.007
  8. 8. Hetmaniok E, Słota D, Zielonka A. Artificial Bee Colo-ny Algorithm Used for Reconstructing the Heat Flux Density in the Solidification Process. In International Conference on Artificial Intel-ligence and Soft Computing; 2014; 363–372.10.1007/978-3-319-07176-3_32
  9. 9. Hetmaniok E, Słota D, Zielonka A, Wituła R. Comparison of ABC and ACO Algorithms Applied for Solving the Inverse Heat Conduction Problem. In International Symposium on Swarm Intelligence and Differential Evolution; 2012; 249–257.10.1007/978-3-642-29353-5_29
  10. 10. Hetmaniok E, Słota D, Zielonka A. Restoration of the cooling conditions in a three-dimensional continuous casting process using AI algorithms. Applied Mathematical Modelling. 2015; 39(16): 4794-4807.10.1016/j.apm.2015.03.056
  11. 11. Zielonka A, Hetmaniok E, Słota D. Inverse alloy solidification problem including the material phenomenon solved by using the bee algorithm. International Communications in Heat and Mass Transfer. 2017; 87:295-301.10.1016/j.icheatmasstransfer.2017.07.014
  12. 12. Grzymkowski R, Hetmaniok E, Słota D, Zielonka A. Application of the Ant Colony Optimization Algorithm in Solving the Inverse Stefan Problem. In Metal Forming; 2012; 1287-1290.
  13. 13. Hetmaniok E, Słota D, Zielonka A. Application of the Swarm Intelligence Algorithm for Investigating the Inverse Continuous Casting Problem. Contemporary Challenges and Solutions in Applied Artificial Intelligence. 2013; 489: 157–162.10.1007/978-3-319-00651-2_21
  14. 14. Matsevityi YM, Alekhina SV, Borukhov VT. Identification of the thermal conductivity coefficient for quasi-stationary two-dimensional heat conduction equations. Journal of Engineering Physics and Thermophysics. 2017; 90(6):1295-1301.10.1007/s10891-017-1686-7
  15. 15. Tereshko V, Loengarov A. Collective decision-making in honey bee foraging dynamics. Computing and Information Systems. 2005; 9: 1-7.
  16. 16. Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies. In Proceedings of the European Conference on Artificial Life; 1991; 134-142.
  17. 17. Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics). 1996; 26(1):29-41.10.1109/3477.484436
  18. 18. Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99; 1999;1470-1477.
  19. 19. Geuzaine C, Remacle JF. GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering. 2009; 79(11):1309-1331.10.1002/nme.2579
  20. 20. Dyja R, Grosser A. Oblicznia równoległe w symulacji krzepnięcia wykorzystującej model pośredni narstania fazy stałej. Modelowanie Inżynierskie. 2015; 24(55):21-26.
  21. 21. Dyja R, Gawronska E, Grosser A, Jeruszka P, Sczygiol N. Estimate the Impact of Different Heat Capacity Approximation Methods on the Numerical Results During Computer Simulation of Solidification. Engineering Letters. 2016; 24(2):237-245.
  22. 22. Kodali HK, Ganapathysubramanian B. A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Computer Methods in Applied Mechanics and Engineering. 2012; 247:113-129.
  23. 23. Balay S, Gropp WD, McInnes LC, Smith BF. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries. In Arge E,BAM,LHP. Modern Software Tools for Scientific Computing. Boston. 1997;163–202.10.1007/978-1-4612-1986-6_8
  24. 24. Dyja R. Comparison of Results from In-House Solidification Convection Model with Standard Benchmark. Acta Physica Polonica. 2021; 139(5):525-528.10.12693/APhysPolA.139.525
DOI: https://doi.org/10.2478/ama-2022-0039 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 325 - 339
Submitted on: Jun 24, 2022
|
Accepted on: Aug 10, 2022
|
Published on: Oct 17, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Elżbieta Gawrońska, Robert Dyja, Maria Zych, Grzegorz Domek, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.