Have a personal or library account? Click to login
Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite Cover

Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite

Open Access
|Oct 2022

References

  1. 1. Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, Julaihi MRMB, Khan A. A review on poly lactic acid (PLA) as a bio-degradable polymer. Polym Bull, 2022.10.1007/s00289-022-04160-y
  2. 2. Banerjee R, Ray SS. Sustainability and Life Cycle Assessment of Thermoplastic Polymers for Packaging: A Review on Fundamental Principles and Applications. Macromolecular Materials and Engineering, 2022; 307:2100794.10.1002/mame.202100794
  3. 3. Siracusa V, Blanco I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers, 2020;12:1641.10.3390/polym12081641
  4. 4. Jenck JF, Agterberg F, Droescher MJ. Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem,2004; 6:544–556.10.1039/b406854h
  5. 5. Kaplan DL. Introduction to Biopolymers from Renewable Resources. In: Kaplan DL (ed) Biopolymers from Renewable Resources. Springer, Berlin, Heidelberg, 1998; 1–29.10.1007/978-3-662-03680-8_1
  6. 6. Kümmerer K. Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem, 2007; 9: 899–907.10.1039/b618298b
  7. 7. Androsch R, Di Lorenzo ML. Synthesis, Structure and Properties of Poly(lactic acid), 1st ed. 2018.10.1007/978-3-319-64230-7
  8. 8. Hu R-H, Ma Z-G, Zheng S, Li Y-N, Yang G-H, Kim H-K, Lim J-K. A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. Int J Precis Eng Manuf, 2012;13: 1243–1246.10.1007/s12541-012-0165-5
  9. 9. Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 2014; 36:1–9.10.1016/j.polymertesting.2014.03.007
  10. 10. Sevostyanov MA, Kaplan MA, Nasakina EO. Development of a Biodegradable Polymer Based on High-Molecular-Weight Polylactide for Medicine and Agriculture: Mechanical Properties and Biocompatibility. Dokl Chem, 2020; 490:36–39.10.1134/S0012500820020044
  11. 11. Tertyshnaya Y, Jobelius H, Olkhov A, Shibryaeva L, Ivanitskikh A. Polylactide Fiber Materials and their Application in Agriculture. Key Engineering Materials. 2022; 910:617–622.10.4028/p-864orl
  12. 12. Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Sá Gaspar R, Préat V, Florindo HF. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 2017; 48:41–57.10.1016/j.actbio.2016.11.01227826003
  13. 13. Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology. The Bone & Joint Journal, 2014; 96-B:569–573.10.1302/0301-620X.96B5.3360624788488
  14. 14. Zhou J, Yu J, Bai D, Lu J, Liu H, Li Y, Li L. AgNW/stereocomplex-type polylactide biodegradable conducting film and its application in flexible electronics. J Mater Sci: Mater Electron, 2021;32:6080–6093.10.1007/s10854-021-05327-5
  15. 15. Al-Attar H, Alwattar AA, Haddad A, Abdullah BA, Quayle P, Yeates SG. Polylactide-perylene derivative for blue biodegradable organic light-emitting diodes. Polymer International, 2021; 70:51–58.10.1002/pi.6083
  16. 16. Ahmed J, Mulla M, Jacob H, Luciano G, T.b. B, Almusallam A. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packaging and Shelf Life, 2019; 21:100355.10.1016/j.fpsl.2019.100355
  17. 17. Ahmed J, Mulla MZ, Al-Zuwayed SA, Joseph A, Auras R. Morphological, barrier, thermal, and rheological properties of high-pressure treated co-extruded polylactide films and the suitability for food packaging. Food Packaging and Shelf Life, 2022; 32:100812.10.1016/j.fpsl.2022.100812
  18. 18. Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013; 38:1504–1542.10.1016/j.progpolymsci.2013.05.014
  19. 19. Malinowski R, Raszkowska-Kaczor A, Moraczewski K, Głuszewski W, Krasinskyi V, Wedderburn L. The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Composites Modified by Electron Beam Irradiation. Applied Sciences, 2021; 11:5317.10.3390/app11125317
  20. 20. Thakur KAM, Kean RT, Zupfer JM, Buehler NU, Doscotch MA, Munson EJ. Solid State 13C CP-MAS NMR Studies of the Crystallinity and Morphology of Poly(l-lactide). Macromolecules, 1996; 29:8844–8851.10.1021/ma960828z
  21. 21. Sinha Ray S, Yamada K, Okamoto M, Ueda K. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer, 2003; 44:857–866.10.1016/S0032-3861(02)00818-2
  22. 22. Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng, 2021 1199:012057.10.1088/1757-899X/1199/1/012057
  23. 23. Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM. Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers,2017; 9:269.10.3390/polym9070269643197430970948
  24. 24. Lim L-T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science,2008; 33:820–852.10.1016/j.progpolymsci.2008.05.004
  25. 25. Perepelkin KE. Polylactide Fibres: Fabrication, Properties, Use, Prospects. A Review. Fibre Chemistry, 2002; 34:85–100.10.1023/A:1016359925976
  26. 26. Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 2018; 107:2246–2255.
  27. 27. Tümer EH, Erbil HY. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings, 2021; 11:390.10.3390/coatings11040390
  28. 28. Cicala G, Giordano D, Tosto C, Filippone G, Recca A, Blanco I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials, 2018; 11:1191.10.3390/ma11071191607318629997365
  29. 29. Ghasem N, Al-Marzouqi M, Abdul Rahim N. Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes: Properties and performance used as gas–liquid membrane contactor for CO2 absorption. Separation and Purification Technology, 2012; 99:91–103.10.1016/j.seppur.2012.07.021
  30. 30. Schweighuber A, Felgel-Farnholz A, Bögl T, Fischer J, Buchberger W. Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polymer Degradation and Stability, 2021; 192:109689.10.1016/j.polymdegradstab.2021.109689
  31. 31. Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments, 2022; 9:57.10.3390/environments9050057
  32. 32. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME. Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Materials Science and Engineering, 2016; C 67:792–806.10.1016/j.msec.2016.05.03727287178
  33. 33. Pan J, Bian L. A physics investigation for influence of carbon nano-tube agglomeration on thermal properties of composites. Materials Chemistry and Physics, 2019; 236:121777.10.1016/j.matchemphys.2019.121777
  34. 34. Tamayo-Vegas S, Muhsan A, Liu C, Tarfaoui M, Lafdi K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers, 2022; 14:1842.10.3390/polym14091842910054935567011
  35. 35. Canevarolo SV, Babetto AC. Effect of screw element type in degradation of polypropylene upon multiple extrusions. Advances in Polymer Technology, 2002; 21:243–249.10.1002/adv.10028
  36. 36. Zou D, Zheng X, Ye Y, Yan D, Xu H, Si S, Li X. Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites. International Journal of Biological Macromolecules, 2022; 216:456–464.10.1016/j.ijbiomac.2022.06.20935809669
  37. 37. Aversa C, Barletta M, Gisario A, Pizzi E, Prati R, Vesco S. Corotating twin-screw extrusion of poly(lactic acid) PLA/poly(butylene succinate) PBS/ micro-lamellar talc blends for extrusion blow molding of biobased bottles for alcoholic beverages. Journal of Applied Polymer Science, 2021 138:51294.10.1002/app.51294
  38. 38. Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, Madajski P, Szroeder P. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials, 2021; 14:5346.10.3390/ma14185346846744634576570
  39. 39. Kaczor D, Bajer K, Domek G, Raszkowska-Kaczor A, Szroeder P. The method of obtaining polymer masterbatches based on polylac-tide with carbon filler. IOP Conf Ser: Mater Sci Eng, 2021; 1199:012058.10.1088/1757-899X/1199/1/012058
  40. 40. PN-EN ISO 11357-(1-3):2009 Tworzywa sztuczne - Różnicowa kalorymetria skaningowa (DSC) - Część 1: Zasady ogólne; Część 2: Wyznaczanie temperatury zeszklenia i stopnia przejścia w stan szklisty; Część 3: Oznaczanie temperatury oraz entalpii topnienia i krystalizacji.
  41. 41. Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. Nanomaterials, 2021; 11:2796.10.3390/nano11112796862522934835562
  42. 42. Batakliev T, Georgiev V, Kalupgian C, Muñoz PAR, Ribeiro H, Fechine GJM, Andrade RJE, Ivanov E, Kotsilkova R. Physicochemical Characterization of PLA-based Composites Holding Carbon Nanofillers. Appl Compos Mater, 2021; 28:1175–1192.10.1007/s10443-021-09911-0
  43. 43. PN-EN ISO 1133-1:2011 Tworzywa sztuczne - Oznaczanie masowego wskaźnika szybkości płynięcia (MFR) i objętościowego wskaźnika szybkości płynięcia (MVR) tworzyw termoplastycznych - Część 1: Metoda standardowa.
  44. 44. PN-EN ISO 294-1:2017-07 Tworzywa sztuczne - Wtryskiwanie kształtek do badań z tworzyw termoplastycznych - Część 1: Zasady ogólne, formowanie uniwersalnych kształtek do badań i kształtek w postaci beleczek.
  45. 45. PN-EN ISO 527-1:2020-01 Tworzywa sztuczne - Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu - Część 1: Zasady ogólne.
  46. 46. PN-EN ISO 179-2:2020-12 Tworzywa sztuczne - Oznaczanie udarności metodą Charpy’ego - Część 2: Instrumentalne badanie udarności.
  47. 47. Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conference Proceedings, 2016; 1725:020101.10.1063/1.4945555
  48. 48. Kister G, Cassanas G, Vert M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 1998; 39:267–273.10.1016/S0032-3861(97)00229-2
  49. 49. Amorin NSQS, Rosa G, Alves JF, Gonçalves SPC, Franchetti SMM, Fechine GJM. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 2014 131, 40023.10.1002/app.40023
  50. 50. Qin D, Kean RT. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl Spectrosc, 1998; 52:488–495.10.1366/0003702981943950
  51. 51. Signori F, Coltelli M-B, Bronco S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 2009; 94:74–82.10.1016/j.polymdegradstab.2008.10.004
  52. 52. Cock F, Cuadri AA, García-Morales M, Partal P. Thermal, rheological and microstructural characterisation of commercial biodegradable polyesters. Polymer Testing, 2013; 32:716–723.10.1016/j.polymertesting.2013.03.015
  53. 53. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 2010; 95:116–125.10.1016/j.polymdegradstab.2009.11.045
  54. 54. Mainil-Varlet P, Hauke C, Maquet V, Printzen G, Arens S, Schaffner T, Jérôme R, Perren S, Schlegel U. Polylactide implants and bacterial contamination: An animal study. Journal of Biomedical Materials Research, 2001; 54:335–343.10.1002/1097-4636(20010305)54:3<335::AID-JBM40>3.0.CO;2-4
  55. 55. Usachev SV, Lomakin SM, Koverzanova EV, Shilkina NG, Levina II, Prut EV, Rogovina SZ, Berlin AA. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta, 2022; 712:179227.10.1016/j.tca.2022.179227
  56. 56. Mngomezulu ME, Luyt AS, John MJ. Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials, 2019; 32:89–107.10.1177/0892705717744830
  57. 57. Harmandaris VA, Daoulas KCh, Mavrantzas VG. Molecular Dynamics Simulation of a Polymer Melt/Solid Interface:  Local Dynamics and Chain Mobility in a Thin Film of Polyethylene Melt Adsorbed on Graphite. Macromolecules, 2005; 38:5796–5809.10.1021/ma050177j
  58. 58. Mysiukiewicz O, Barczewski M, Skórczewska K, Matykiewicz D. Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers, 2020; 12:1333.10.3390/polym12061333
  59. 59. Przekop RE, Kujawa M, Pawlak W, Dobrosielska M, Sztorch B, Wieleba W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers, 2020; 12:1250.10.3390/polym12061250
  60. 60. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability, 2010; 95:889–900.10.1016/j.polymdegradstab.2009.12.019
  61. 61. Żenkiewicz M, Richert J, Rytlewski P, Richert A. Comparative analysis of shungite and graphite effects on some properties of polylactide composites. Polymer Testing, 2011; 30:429–435.10.1016/j.polymertesting.2011.03.004
  62. 62. Kim I-H, Jeong YG. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 2010; 48:850–858.10.1002/polb.21956
  63. 63. Żenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczyńska M, Karasiewicz T. Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 2009; 28:412–418.10.1016/j.polymertesting.2009.01.012
DOI: https://doi.org/10.2478/ama-2022-0038 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 316 - 324
Submitted on: Jun 28, 2022
|
Accepted on: Jul 24, 2022
|
Published on: Oct 14, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Daniel Kaczor, Krzysztof Bajer, Grzegorz Domek, Piotr Madajski, Aneta Raszkowska-Kaczor, Paweł Szroeder, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.