Have a personal or library account? Click to login
Introduction to Modelling the Correlation Between Grain Sizes of Feed Material and the Structure and Efficiency of the Process of Co-Rotating Twin-Screw Extrusion of Non-Flammable Composites with a Pla Matrix Cover

Introduction to Modelling the Correlation Between Grain Sizes of Feed Material and the Structure and Efficiency of the Process of Co-Rotating Twin-Screw Extrusion of Non-Flammable Composites with a Pla Matrix

Open Access
|Oct 2022

References

  1. 1. Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng. 2021;1199(1):012057.10.1088/1757-899X/1199/1/012057
  2. 2. Stasiek J, Bajer K, Stasiek A, Bogucki M. Co-rotation twin-screw extruders for polymer materials. A method for experimental studying the extrusion process. Przemysl Chemiczny. 2012;91:224–30.
  3. 3. Martin C. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective. AAPS PharmSci Tech. 2016;17(1):3–19.10.1208/s12249-016-0485-3476612226883259
  4. 4. Lewandowski A, Wilczyński K. Modeling of Twin Screw Extrusion of Polymeric Materials. Polymers. 2022;14(2):274.10.3390/polym14020274877997435054679
  5. 5. Flitta I, Sheppard T. Effect of pressure and temperature variations on FEM prediction of deformation during extrusion. Materials Science and Technology. 2005;21(3):339–46.10.1179/174328405X29221
  6. 6. Mechanisms of mixing in single and co-rotating twin screw extruders - Lawal - 1995 - Polymer Engineering & Science - Wiley Online Library [Internet]. [cited 2022 Jun 12]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pen.760351702
  7. 7. Carneiro O, Covas J, Vergnes B. Experimental and Theoretical Study of Twin-Screw Extrusion of Polypropylene. Journal of Applied Polymer Science. 2000;4:78.10.1002/1097-4628(20001114)78:7<1419::AID-APP130>3.0.CO;2-B
  8. 8. Dittrich C, Pecenka R, Løes AK, Cáceres R, Conroy J, Rayns F, et al. Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties. Agronomy. 2021;11.10.3390/agronomy11061185
  9. 9. Eitzlmayr A, Khinast J, Hörl G, Koscher G, Reynolds G, Huang Z, et al. Experimental characterization and modeling of twin-screw extruder elements for pharmaceutical hot melt extrusion. AIChE Journal. 2013;59(11):4440–50.10.1002/aic.14184
  10. 10. Kuo CFJ, Huang CC, Lin YJ, Dong MY. A study of optimum processing parameters and abnormal parameter identification of the twin-screw co-rotating extruder mixing process based on the distribution and dispersion properties for SiO2/low-density polyethylene nano-composites. Textile Research Journal. 2020;90(9–10): 1102–17.10.1177/0040517519886055
  11. 11. Kalyon DM, Malik M. An Integrated Approach for Numerical Analysis of Coupled Flow and Heat Transfer in Co-rotating Twin Screw Extruders. International Polymer Processing. 2007 Jul 1;22(3):293–302.10.3139/217.1020
  12. 12. Andersen P. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them. In Cleveland, Ohio, USA; 2015 [cited 2022 Jun 12]. 020007.10.1063/1.4918387
  13. 13. Li M. Effects of API particle size on the dissolution rate in molten polymer excipient matrices during hot melt extrusion, conducted in a co-rotating twin-screw extruder. Theses [Internet]. 2013; Available from: https://digitalcommons.njit.edu/theses/172
  14. 14. Stasiek A, Raszkowska-Kaczor A, Formela K. Badania wpływu nieorganicznych napełniaczy proszkowych na właściwości polipropylenu. Przemysł Chemiczny. 2014;888–92.
  15. 15. Zhang B, Zhang Y, Dreisoerner J, Wei Y. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering. 2015;157:77–83.10.1016/j.jfoodeng.2015.02.019
  16. 16. Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. 1996;29(5):423–9.10.1016/S0963-9969(96)00036-1
  17. 17. Andrzej Stasiek. Badania procesu współbieżnego dwuślimakowego wytłaczania modyfikowanego polipropylenu przy zmiennej geometrii ślimaków [PhD Thesis]. [Bydgoszcz]: Uniwersytet Technologiczno-Przyrodniczy; 2015.
  18. 18. Zbigniew Polański. Współczesne metody badań doświadczalnych, Warszawa: Wiedza Powszechna; 1978:215
  19. 19. Kazimierz Mańczak. Technika planowania eksperymentu Warszawa: WNT; 1976:277
  20. 20. Mieczysław Korzyński. Metodyka eksperymentu.Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych [Internet]. 2006th ed. Warszawa: WNT; 2006;278
  21. 21. Murariu M, Dubois P. PLA composites: From production to properties. Advanced Drug Delivery Reviews. 2016;107:17–46.10.1016/j.addr.2016.04.003
  22. 22. Puszczykowska N, Rytlewski P, Macko M, Fiedurek K, Janczak K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments. 2022;9(5):56.10.3390/environments9050056
  23. 23. Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments. 2022;9(5):57.10.3390/environments9050057
  24. 24. Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, et al. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials. 2021;14(18):5346.10.3390/ma14185346846744634576570
  25. 25. Pang Q, Kang F, Deng J, Lei L, Lu J, Shao S. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11(23):13821–31.10.1039/D1RA01409A869751835423935
  26. 26. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polymer Degradation and Stability. 2002;77(2):195–202.10.1016/S0141-3910(02)00034-4
  27. 27. Tomiak F, Rathberger K, Schöffel A, Drummer D. Expandable Graphite for Flame Retardant PA6 Applications. Polymers. 2021;13(16):2733.10.3390/polym13162733840073734451272
  28. 28. Grover T, Khandual A, Chatterjee kalesh nath, Jamdagni R. Flame retardants: An overview. 2014;61:29–36.
  29. 29. Yan L, Xu Z, Wang X, Deng N, Chu Z. Synergistic effects of aluminum hydroxide on improving the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. J Coat Technol Res. 2018;15(6):1357–69.10.1007/s11998-018-0069-0
  30. 30. Wikoff DS, Birnbaum L. Human Health Effects of Brominated Flame Retardants. In: Eljarrat E, Barceló D, editors. Brominated Flame Retardants [Internet]. Berlin, Heidelberg: Springer; 2011;19–53. (The Handbook of Environmental Chemistry).10.1007/698_2010_97
  31. 31. Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. Environ Chem Lett [Internet]. 2022 Jan 23 [cited 2022 Jul 29]; Available from: https://doi.org/10.1007/s10311-022-01392-2878378135095379
  32. 32. Ding D, Liu Y, Lu Y, Chen Y, Liao Y, Zhang G, et al. A Formalde-hyde-free P-N Synergistic Flame Retardant Containing Phosphonate and Ammonium Phosphate for Cotton Fabrics. Journal of Natural Fibers. 2022;0(0):1–11.
  33. 33. Li S, Zhong L, Huang S, Wang D, Zhang F, Zhang G. A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polymer Degradation and Stability. 2019;164:145–56.10.1016/j.polymdegradstab.2019.04.009
  34. 34. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. 2014;10.1016/j.matdes.2013.07.095
  35. 35. Chow W, Teoh E, Karger-Kocsis J. Flame retarded poly(lactic acid): A review. Express Polymer Letters. 2018;12:396–417.10.3144/expresspolymlett.2018.34
  36. 36. Noor Zuhaira AA, Rahmah M. Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites. Advanced Materials Research. 2013; 795:286–9.10.4028/www.scientific.net/AMR.795.286
  37. 37. Gallagher LW, McDonald AG. The effect of micron sized wood fibers in wood plastic composites. Maderas Ciencia y tecnología. 2013; 15(3):357–74.
  38. 38. Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylac-tide/graphene nanoplatelets composite films: Impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites. 2021;42(6):2898–909.10.1002/pc.26023
  39. 39. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal. 2013;49(11):3630–41.10.1016/j.eurpolymj.2013.07.033
DOI: https://doi.org/10.2478/ama-2022-0036 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 301 - 308
Submitted on: Jun 28, 2022
Accepted on: Jul 31, 2022
Published on: Oct 14, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Kacper Fiedurek, Paweł Szroeder, Marek Macko, Aneta Raszkowska-Kaczor, Marcin Borowicz, Natalia Puszczykowska, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.