References
- 1. Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng. 2021;1199(1):012057.10.1088/1757-899X/1199/1/012057
- 2. Stasiek J, Bajer K, Stasiek A, Bogucki M. Co-rotation twin-screw extruders for polymer materials. A method for experimental studying the extrusion process. Przemysl Chemiczny. 2012;91:224–30.
- 3. Martin C. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective. AAPS PharmSci Tech. 2016;17(1):3–19.10.1208/s12249-016-0485-3476612226883259
- 4. Lewandowski A, Wilczyński K. Modeling of Twin Screw Extrusion of Polymeric Materials. Polymers. 2022;14(2):274.10.3390/polym14020274877997435054679
- 5. Flitta I, Sheppard T. Effect of pressure and temperature variations on FEM prediction of deformation during extrusion. Materials Science and Technology. 2005;21(3):339–46.10.1179/174328405X29221
- 6. Mechanisms of mixing in single and co-rotating twin screw extruders - Lawal - 1995 - Polymer Engineering & Science - Wiley Online Library [Internet]. [cited 2022 Jun 12]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pen.760351702
- 7. Carneiro O, Covas J, Vergnes B. Experimental and Theoretical Study of Twin-Screw Extrusion of Polypropylene. Journal of Applied Polymer Science. 2000;4:78.10.1002/1097-4628(20001114)78:7<1419::AID-APP130>3.0.CO;2-B
- 8. Dittrich C, Pecenka R, Løes AK, Cáceres R, Conroy J, Rayns F, et al. Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties. Agronomy. 2021;11.10.3390/agronomy11061185
- 9. Eitzlmayr A, Khinast J, Hörl G, Koscher G, Reynolds G, Huang Z, et al. Experimental characterization and modeling of twin-screw extruder elements for pharmaceutical hot melt extrusion. AIChE Journal. 2013;59(11):4440–50.10.1002/aic.14184
- 10. Kuo CFJ, Huang CC, Lin YJ, Dong MY. A study of optimum processing parameters and abnormal parameter identification of the twin-screw co-rotating extruder mixing process based on the distribution and dispersion properties for SiO2/low-density polyethylene nano-composites. Textile Research Journal. 2020;90(9–10): 1102–17.10.1177/0040517519886055
- 11. Kalyon DM, Malik M. An Integrated Approach for Numerical Analysis of Coupled Flow and Heat Transfer in Co-rotating Twin Screw Extruders. International Polymer Processing. 2007 Jul 1;22(3):293–302.10.3139/217.1020
- 12. Andersen P. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them. In Cleveland, Ohio, USA; 2015 [cited 2022 Jun 12]. 020007.10.1063/1.4918387
- 13. Li M. Effects of API particle size on the dissolution rate in molten polymer excipient matrices during hot melt extrusion, conducted in a co-rotating twin-screw extruder. Theses [Internet]. 2013; Available from: https://digitalcommons.njit.edu/theses/172
- 14. Stasiek A, Raszkowska-Kaczor A, Formela K. Badania wpływu nieorganicznych napełniaczy proszkowych na właściwości polipropylenu. Przemysł Chemiczny. 2014;888–92.
- 15. Zhang B, Zhang Y, Dreisoerner J, Wei Y. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering. 2015;157:77–83.10.1016/j.jfoodeng.2015.02.019
- 16. Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. 1996;29(5):423–9.10.1016/S0963-9969(96)00036-1
- 17. Andrzej Stasiek. Badania procesu współbieżnego dwuślimakowego wytłaczania modyfikowanego polipropylenu przy zmiennej geometrii ślimaków [PhD Thesis]. [Bydgoszcz]: Uniwersytet Technologiczno-Przyrodniczy; 2015.
- 18. Zbigniew Polański. Współczesne metody badań doświadczalnych, Warszawa: Wiedza Powszechna; 1978:215
- 19. Kazimierz Mańczak. Technika planowania eksperymentu Warszawa: WNT; 1976:277
- 20. Mieczysław Korzyński. Metodyka eksperymentu.Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych [Internet]. 2006th ed. Warszawa: WNT; 2006;278
- 21. Murariu M, Dubois P. PLA composites: From production to properties. Advanced Drug Delivery Reviews. 2016;107:17–46.10.1016/j.addr.2016.04.003
- 22. Puszczykowska N, Rytlewski P, Macko M, Fiedurek K, Janczak K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments. 2022;9(5):56.10.3390/environments9050056
- 23. Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments. 2022;9(5):57.10.3390/environments9050057
- 24. Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, et al. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials. 2021;14(18):5346.10.3390/ma14185346846744634576570
- 25. Pang Q, Kang F, Deng J, Lei L, Lu J, Shao S. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11(23):13821–31.10.1039/D1RA01409A869751835423935
- 26. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polymer Degradation and Stability. 2002;77(2):195–202.10.1016/S0141-3910(02)00034-4
- 27. Tomiak F, Rathberger K, Schöffel A, Drummer D. Expandable Graphite for Flame Retardant PA6 Applications. Polymers. 2021;13(16):2733.10.3390/polym13162733840073734451272
- 28. Grover T, Khandual A, Chatterjee kalesh nath, Jamdagni R. Flame retardants: An overview. 2014;61:29–36.
- 29. Yan L, Xu Z, Wang X, Deng N, Chu Z. Synergistic effects of aluminum hydroxide on improving the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. J Coat Technol Res. 2018;15(6):1357–69.10.1007/s11998-018-0069-0
- 30. Wikoff DS, Birnbaum L. Human Health Effects of Brominated Flame Retardants. In: Eljarrat E, Barceló D, editors. Brominated Flame Retardants [Internet]. Berlin, Heidelberg: Springer; 2011;19–53. (The Handbook of Environmental Chemistry).10.1007/698_2010_97
- 31. Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. Environ Chem Lett [Internet]. 2022 Jan 23 [cited 2022 Jul 29]; Available from: https://doi.org/10.1007/s10311-022-01392-2878378135095379
- 32. Ding D, Liu Y, Lu Y, Chen Y, Liao Y, Zhang G, et al. A Formalde-hyde-free P-N Synergistic Flame Retardant Containing Phosphonate and Ammonium Phosphate for Cotton Fabrics. Journal of Natural Fibers. 2022;0(0):1–11.
- 33. Li S, Zhong L, Huang S, Wang D, Zhang F, Zhang G. A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polymer Degradation and Stability. 2019;164:145–56.10.1016/j.polymdegradstab.2019.04.009
- 34. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. 2014;10.1016/j.matdes.2013.07.095
- 35. Chow W, Teoh E, Karger-Kocsis J. Flame retarded poly(lactic acid): A review. Express Polymer Letters. 2018;12:396–417.10.3144/expresspolymlett.2018.34
- 36. Noor Zuhaira AA, Rahmah M. Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites. Advanced Materials Research. 2013; 795:286–9.10.4028/www.scientific.net/AMR.795.286
- 37. Gallagher LW, McDonald AG. The effect of micron sized wood fibers in wood plastic composites. Maderas Ciencia y tecnología. 2013; 15(3):357–74.
- 38. Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylac-tide/graphene nanoplatelets composite films: Impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites. 2021;42(6):2898–909.10.1002/pc.26023
- 39. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal. 2013;49(11):3630–41.10.1016/j.eurpolymj.2013.07.033