Have a personal or library account? Click to login

Influence of Imperfect Interface of Anisotropic Thermomagnetoelectroelastic Bimaterial Solids on Interaction of Thin Deformable Inclusions

Open Access
|Jul 2022

References

  1. 1. Kaessmair S, Javili A, Steinmann P. Thermomechanics of solids with general imperfect coherent interfaces. Archive of Applied Mechanics. 2014;84: 1409-1426. https://doi.org/10.1007/s00419-014-0870-x
  2. 2. Benvensite Y. A general interface model for a three-dimensional curved thin anisotropic interphace between two anisotropic media. Journal of the Mechanics and Physics of Solids. 2006;54: 708-734. https://doi.org/10.1016/j.jmps.2005.10.009
  3. 3. Pasternak I, Pasternak R, Sulym H. Boundary integral equations and Green’s functions for 2D thermoelectroelastic biomaterial. Engineering Analysis with Boundary Elements. 2014;48: 87-101. https://doi.org/10.1016/j.enganabound.2014.06.010
  4. 4. Pasternak I, Pasternak R, Sulym H. 2D boundary element analysis of defective thermoelectroelastic bimaterial with thermally imperfect but mechanically and electrically perfect interface. Engineering Analysis with Boundary Elements. 2015;61: 194-206. https://doi.org/10.1016/j.enganabound.2015.07.012
  5. 5. Muskhelishvili NI. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. First Edition. Mineola: Dover Publications; 2008.
  6. 6. Hwu C. Anisotropic elastic plates. London: Springer; 2010.10.1007/978-1-4419-5915-7
  7. 7. Ting TC. Anisotropic elasticity: theory and applications. New York: Oxford University Press; 1996.10.1093/oso/9780195074475.001.0001
  8. 8. Pasternak I. Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity. Engineering Analysis with Boundary Elements. 2012;36(12): 1931-41. https://doi.org/10.1016/j.enganabound.2012.07.007
  9. 9. Pasternak I. Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities. Engineering Analysis with Boundary Elements. 2011;23: 678-90. https://doi.org/10.1016/j.enganabound.2010.12.001
  10. 10. Sulym GT. Bases of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [inUkrainian]. Lviv: Dosl.-Vyd. Tsentr NTSh; 2007.
  11. 11. Pan E, Amadei B. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements. 1999;23: 683-91. https://doi.org/10.1016/S0955-7997(99)00018-1
  12. 12. Wang X, Pan E. Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect interface. Acta Mechanica et Automatica. 2010;209: 115-128. https://doi.org/10.1007/s00707-009-0146-7
  13. 13. Sladek J, Sladek V, Wuensche M, Zhang, Ch. Analysis of an interface crack between two dissimilar piezoelectric solids. Engineering Fracture Mechanics. 2012;89: 114-27. https://doi.org/10.1016/j.engfracmech.2012.04.032
  14. 14. Wang TC, Han XL. Fracture mechanics of piezoelectric materials. International journal fracture mechanics. 1999;98: 15-35. https://doi.org/10.1023/A:1018656606554
  15. 15. Qin QH. Green’s function and boundary elements of multifield materials. Oxford: Elsevier Science; 2007.
  16. 16. Yang J. Special topics in the theory of piezoelectricity. London: Springer; 2009.10.1007/978-0-387-89498-0
  17. 17. Pasternak I, Pasternak R, Sulym H. A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements. 2013;37(2): 419-33. https://doi.org/10.1016/j.enganabound.2012.11.002
  18. 18. Dunn ML. Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients. Journal of Applied Physics. 1993;73: 5131-40. https://doi.org/10.1063/1.353787
  19. 19. Berlincourt D, Jaffe H, Shiozawa LR. Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Physical Review. 1963;129: 1009-17. https://doi.org/10.1103/PhysRev.129.1009
DOI: https://doi.org/10.2478/ama-2022-0029 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 242 - 249
Submitted on: Mar 12, 2022
Accepted on: May 31, 2022
Published on: Jul 13, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Heorhiy Sulym, Andrii Vasylyshyn, Iaroslav Pasternak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.