1. Kaessmair S, Javili A, Steinmann P. Thermomechanics of solids with general imperfect coherent interfaces. Archive of Applied Mechanics. 2014;84: 1409-1426. https://doi.org/10.1007/s00419-014-0870-x
2. Benvensite Y. A general interface model for a three-dimensional curved thin anisotropic interphace between two anisotropic media. Journal of the Mechanics and Physics of Solids. 2006;54: 708-734. https://doi.org/10.1016/j.jmps.2005.10.009
3. Pasternak I, Pasternak R, Sulym H. Boundary integral equations and Green’s functions for 2D thermoelectroelastic biomaterial. Engineering Analysis with Boundary Elements. 2014;48: 87-101. https://doi.org/10.1016/j.enganabound.2014.06.010
4. Pasternak I, Pasternak R, Sulym H. 2D boundary element analysis of defective thermoelectroelastic bimaterial with thermally imperfect but mechanically and electrically perfect interface. Engineering Analysis with Boundary Elements. 2015;61: 194-206. https://doi.org/10.1016/j.enganabound.2015.07.012
5. Muskhelishvili NI. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. First Edition. Mineola: Dover Publications; 2008.
8. Pasternak I. Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity. Engineering Analysis with Boundary Elements. 2012;36(12): 1931-41. https://doi.org/10.1016/j.enganabound.2012.07.007
9. Pasternak I. Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities. Engineering Analysis with Boundary Elements. 2011;23: 678-90. https://doi.org/10.1016/j.enganabound.2010.12.001
10. Sulym GT. Bases of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [inUkrainian]. Lviv: Dosl.-Vyd. Tsentr NTSh; 2007.
11. Pan E, Amadei B. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements. 1999;23: 683-91. https://doi.org/10.1016/S0955-7997(99)00018-1
12. Wang X, Pan E. Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect interface. Acta Mechanica et Automatica. 2010;209: 115-128. https://doi.org/10.1007/s00707-009-0146-7
13. Sladek J, Sladek V, Wuensche M, Zhang, Ch. Analysis of an interface crack between two dissimilar piezoelectric solids. Engineering Fracture Mechanics. 2012;89: 114-27. https://doi.org/10.1016/j.engfracmech.2012.04.032
14. Wang TC, Han XL. Fracture mechanics of piezoelectric materials. International journal fracture mechanics. 1999;98: 15-35. https://doi.org/10.1023/A:1018656606554
17. Pasternak I, Pasternak R, Sulym H. A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements. 2013;37(2): 419-33. https://doi.org/10.1016/j.enganabound.2012.11.002
19. Berlincourt D, Jaffe H, Shiozawa LR. Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Physical Review. 1963;129: 1009-17. https://doi.org/10.1103/PhysRev.129.1009