Have a personal or library account? Click to login

Experimental and Numerical Small Punch Tests of the 14Cr ODS Ferritic Steel

Open Access
|Jul 2022

References

  1. 1. Corwin WR, Rosinski ST, van Walle E. Small Specimen Test Techniques. Philadelphia (PE): Society for Testing and Materials; 1998.10.1520/STP1329-EB
  2. 2. Chen H, Hyde TH. Use of multi-step loading small punch test to investigate the ductile-to-brittle transition behaviour of a thermally sprayed CoNiCrAlY coating. Mater Sci Eng A. 2017;680:203-209.10.1016/j.msea.2016.10.097
  3. 3. Contreras M, Rodríguez C, Belzunce FJ, Betegón C. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract Eng Mater Struct. 2008;31(9):727-737.10.1111/j.1460-2695.2008.01259.x
  4. 4. Jaya BN, Alam Z. Small-scale mechanical testing of materials. Curr Sci. 2013;105(8);1073-1099.
  5. 5. Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite J-M, Ripplinger S, de Haan F. Recent developments in small punch testing: Tensile properties and DBTT. Theor Appl Fract Mech. 2016;86(A):2-10.10.1016/j.tafmec.2016.09.012
  6. 6. Oksiuta Z, Lewandowska M, Kurzydłowski KJ. Mechanical properties and thermal stability of nanostructured ODS RAF steels. Mech Mater. 2013;67:15-24.10.1016/j.mechmat.2013.07.006
  7. 7. Okuda N, Kasada R, Kimura A. Statistical evaluation of anisotropic fracture behavior of ODS ferritic steels by using small punch tests, J Nucl Mater. 2009;386-388:974-978.10.1016/j.jnucmat.2008.12.265
  8. 8. Shimomura Y, Spears W. Review of the ITER Project, IEEE Trans Appl Supercond. 2004;14(2):1369-1735.10.1109/TASC.2004.830580
  9. 9. Motojima O. The ITER project construction status. Nucl Fusion. 2015;55(10):104023.10.1088/0029-5515/55/10/104023
  10. 10. Zinkle SJ. Challenges in Developing Materials for Fusion Technology - Past, Present and Future. Fusion Sci Technol. 2017;64(2):65-7510.13182/FST13-631
  11. 11. Zhao Q, Ma Z, Yu L, Li H, Liu C, Li C, Liu Y. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment. J Mater Sci Technol. 2019;35(6):1064-1073.10.1016/j.jmst.2018.12.008
  12. 12. Zhang L, Yu L, Liu Y, Liu C, Li H, Wu J. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels. Mater Sci Eng A. 2017;695:66–73.10.1016/j.msea.2017.04.020
  13. 13. Li W, Hao T, Gao R, Wang X, Zhang T, Fang Q, Liu C. The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel. Powder Technol. 2017;319:172–182.10.1016/j.powtec.2017.06.041
  14. 14. Oksiuta Z, Mueller P, Spätig P, Baluc N. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel. J Nucl Mater. 2011;412(2): 221-226.10.1016/j.jnucmat.2011.03.006
  15. 15. Oksiuta Z, Ozieblo A, Perkowski K, Osuchowski M, Lewandowska M. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel. Fusion Eng Des. 2014;89(2):137-141.10.1016/j.fusengdes.2014.01.052
  16. 16. Li Y, Shen J, Li F, Yang H, Kano S, Matsukawa Y, Muroga T. Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels. Mater Sci Eng A. 2016;654:203-212.10.1016/j.msea.2015.12.032
  17. 17. Zhao Q, Yu L, Liu Y, Huang Y, Ma Z, Li H, Wu J. Microstructure and tensile properties of a 14Cr ODS ferritic steel. Mater Sci Eng A. 2017;680:347-350.10.1016/j.msea.2016.10.118
  18. 18. De Sanctis M, Fava A, Lovicu G, Montanari R, Richetta M, Testani C, Varone A. Mechanical Characterization of a Nano-ODS Steel Prepared by Low-Energy Mechanical Alloying. Metals. 2017;7(8): 283.10.3390/met7080283
  19. 19. Murty K, Charit I. An Introduction to Nuclear Materials: Fundamentals and Applications. Weinheim (DE): Wiley-VCH; 2013.
  20. 20. Karthik V, Kasiviswanathan KV, Raj B. Miniaturized Testing of Engineering Materials. Boca Raton (FL): CRC Press; 2017.10.1201/9781315372051
  21. 21. Simonovski I, Holmström S, Bruchhausen M. (2017), Small punch tensile testing of curved specimens. Int J Mech Sci. 2017;120: 204-213.10.1016/j.ijmecsci.2016.11.029
  22. 22. Manahan M, Argon A, Harling O. The development of a miniaturised disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater. 1981;104:1545-1550.10.1016/0022-3115(82)90820-0
  23. 23. Altstadt E, Ge HE, Kuksenko V, Serrano M, Houska M, Lasan M, Bruchhausen M, Lapetite J-M, Dai Y. Critical evaluation of the small punch test as a screening procedure for mechanical properties. J Nucl Mater. 2016;472:186-195.10.1016/j.jnucmat.2015.07.029
  24. 24. Lucon E, Benzing J, Hrabe N. Development and Validation of Small Punch Testing at NIST. Gaithersburg (MD): National Institute of Standards and Technology; 2020. doi: 10.6028/NIST.IR.8303
  25. 25. Yang SS, Ling X, Qian Y, Ma RB. Yield Strength Analysis by Small Punch Test Using Inverse Finite Element Method. Procedia Eng. 2015;130:1039-1045.10.1016/j.proeng.2015.12.259
  26. 26. Moreno MF, Bertolino G, Yawny A. The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test. Mater Des. 2016;95, 623–631.10.1016/j.matdes.2016.01.148
  27. 27. Sánchez-Ávila D, Orozco-Caballero A, Martínez E, Portolés L, Barea R, Carreño F. High-accuracy compliance correction for nonlinear mechanical testing: Improving Small Punch Test characterization. Nucl Mater Energy. 2021;26:100914.10.1016/j.nme.2021.100914
  28. 28. Campitelli EN, Spätig P, Bonadé R, Hoffelner W, Victoria M. Assessment of the constitutive properties from small ball punch test: experiment and modelling. J Nucl Mater. 2004;335(3):366–378.10.1016/j.jnucmat.2004.07.052
  29. 29. Kalidindi SR, Abusafieh A, El-Danaf E. Accurate characterization of machine compliance for simple compression testing. Exp Mech. 1997;37(2);210–215.10.1007/BF02317861
  30. 30. García TE, Rodríguez C, Belzunce FJ, Suárez C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd. 2014;582:708–717.10.1016/j.jallcom.2013.08.009
  31. 31. Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater. 1987;150(1):42–52.10.1016/0022-3115(87)90092-4
  32. 32. Prakash RV, Arunkumar S. Influence of Friction on the Response of Small Punch Test. Trans Indian Inst Met. 2016;69(2):617-622.10.1007/s12666-015-0769-4
  33. 33. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Gelbstein Y. Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des. 2015;83:75-84.10.1016/j.matdes.2015.05.049
DOI: https://doi.org/10.2478/ama-2022-0027 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 225 - 232
Submitted on: Mar 30, 2022
Accepted on: May 16, 2022
Published on: Jul 1, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Krzysztof Nowik, Zbigniew Oksiuta, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.