2. Chen H, Hyde TH. Use of multi-step loading small punch test to investigate the ductile-to-brittle transition behaviour of a thermally sprayed CoNiCrAlY coating. Mater Sci Eng A. 2017;680:203-209.10.1016/j.msea.2016.10.097
3. Contreras M, Rodríguez C, Belzunce FJ, Betegón C. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract Eng Mater Struct. 2008;31(9):727-737.10.1111/j.1460-2695.2008.01259.x
5. Bruchhausen M, Holmström S, Simonovski I, Austin T, Lapetite J-M, Ripplinger S, de Haan F. Recent developments in small punch testing: Tensile properties and DBTT. Theor Appl Fract Mech. 2016;86(A):2-10.10.1016/j.tafmec.2016.09.012
7. Okuda N, Kasada R, Kimura A. Statistical evaluation of anisotropic fracture behavior of ODS ferritic steels by using small punch tests, J Nucl Mater. 2009;386-388:974-978.10.1016/j.jnucmat.2008.12.265
11. Zhao Q, Ma Z, Yu L, Li H, Liu C, Li C, Liu Y. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment. J Mater Sci Technol. 2019;35(6):1064-1073.10.1016/j.jmst.2018.12.008
12. Zhang L, Yu L, Liu Y, Liu C, Li H, Wu J. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels. Mater Sci Eng A. 2017;695:66–73.10.1016/j.msea.2017.04.020
13. Li W, Hao T, Gao R, Wang X, Zhang T, Fang Q, Liu C. The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel. Powder Technol. 2017;319:172–182.10.1016/j.powtec.2017.06.041
14. Oksiuta Z, Mueller P, Spätig P, Baluc N. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel. J Nucl Mater. 2011;412(2): 221-226.10.1016/j.jnucmat.2011.03.006
15. Oksiuta Z, Ozieblo A, Perkowski K, Osuchowski M, Lewandowska M. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel. Fusion Eng Des. 2014;89(2):137-141.10.1016/j.fusengdes.2014.01.052
16. Li Y, Shen J, Li F, Yang H, Kano S, Matsukawa Y, Muroga T. Effects of fabrication processing on the microstructure and mechanical properties of oxide dispersion strengthening steels. Mater Sci Eng A. 2016;654:203-212.10.1016/j.msea.2015.12.032
17. Zhao Q, Yu L, Liu Y, Huang Y, Ma Z, Li H, Wu J. Microstructure and tensile properties of a 14Cr ODS ferritic steel. Mater Sci Eng A. 2017;680:347-350.10.1016/j.msea.2016.10.118
18. De Sanctis M, Fava A, Lovicu G, Montanari R, Richetta M, Testani C, Varone A. Mechanical Characterization of a Nano-ODS Steel Prepared by Low-Energy Mechanical Alloying. Metals. 2017;7(8): 283.10.3390/met7080283
21. Simonovski I, Holmström S, Bruchhausen M. (2017), Small punch tensile testing of curved specimens. Int J Mech Sci. 2017;120: 204-213.10.1016/j.ijmecsci.2016.11.029
22. Manahan M, Argon A, Harling O. The development of a miniaturised disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater. 1981;104:1545-1550.10.1016/0022-3115(82)90820-0
23. Altstadt E, Ge HE, Kuksenko V, Serrano M, Houska M, Lasan M, Bruchhausen M, Lapetite J-M, Dai Y. Critical evaluation of the small punch test as a screening procedure for mechanical properties. J Nucl Mater. 2016;472:186-195.10.1016/j.jnucmat.2015.07.029
24. Lucon E, Benzing J, Hrabe N. Development and Validation of Small Punch Testing at NIST. Gaithersburg (MD): National Institute of Standards and Technology; 2020. doi: 10.6028/NIST.IR.8303
25. Yang SS, Ling X, Qian Y, Ma RB. Yield Strength Analysis by Small Punch Test Using Inverse Finite Element Method. Procedia Eng. 2015;130:1039-1045.10.1016/j.proeng.2015.12.259
26. Moreno MF, Bertolino G, Yawny A. The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test. Mater Des. 2016;95, 623–631.10.1016/j.matdes.2016.01.148
27. Sánchez-Ávila D, Orozco-Caballero A, Martínez E, Portolés L, Barea R, Carreño F. High-accuracy compliance correction for nonlinear mechanical testing: Improving Small Punch Test characterization. Nucl Mater Energy. 2021;26:100914.10.1016/j.nme.2021.100914
28. Campitelli EN, Spätig P, Bonadé R, Hoffelner W, Victoria M. Assessment of the constitutive properties from small ball punch test: experiment and modelling. J Nucl Mater. 2004;335(3):366–378.10.1016/j.jnucmat.2004.07.052
29. Kalidindi SR, Abusafieh A, El-Danaf E. Accurate characterization of machine compliance for simple compression testing. Exp Mech. 1997;37(2);210–215.10.1007/BF02317861
30. García TE, Rodríguez C, Belzunce FJ, Suárez C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd. 2014;582:708–717.10.1016/j.jallcom.2013.08.009
31. Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater. 1987;150(1):42–52.10.1016/0022-3115(87)90092-4
32. Prakash RV, Arunkumar S. Influence of Friction on the Response of Small Punch Test. Trans Indian Inst Met. 2016;69(2):617-622.10.1007/s12666-015-0769-4
33. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Gelbstein Y. Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des. 2015;83:75-84.10.1016/j.matdes.2015.05.049