Have a personal or library account? Click to login

Analytical and Numerical Analysis of Injection Pump (Stepped) Shaft Vibrations Using Timoshenko Theory

Open Access
|Jul 2022

References

  1. 1. de Silva C. Vibration and Shock Handbook. Taylor & Francis. Boca Raton. 2005.10.1201/9781420039894
  2. 2. Rao SS, Vibration of Continuous Systems. Wiley. Hoboken. 2007.10.1002/9780470117866
  3. 3. Ngo VT, Xie D, Xiong Y, Zhang H, Yang Y. Dynamic analysis of a rig shafting vibration based on finite element. Frontiers of Mechanical Engineering. 2013;8:244-251.10.1007/s11465-013-0264-8
  4. 4. Noga S. Dynamical analysis of the low – power electrical engine rotor. 10 European Mechanics of Materials Conference (EMMC10). Kazimierz Dolny. June 11-14. 2017:457-465.
  5. 5. Noga S, Bogacz R. Free vibration of the Timoshenko beam interacting with the Winkler foundation. Symulacja w Badaniach i Rozwoju. 2011;2(4):209-223.
  6. 6. Friswell M, Mottershead J. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers. Dordrecht. 1995.10.1007/978-94-015-8508-8
  7. 7. Noga S. Analytical and Numerical Problems of Systems with Circular Symmetry Vibrations. Publishing House of Rzeszow University of Technology. Rzeszow. Poland (in Polish). 2015.
  8. 8. Lee U, Jang I. Spectral element model for the vibration of a spinning Timoshenko shaft. Journal of Mechanics of Materials and Structures. 2012;7(2):145-164.10.2140/jomms.2012.7.145
  9. 9. Shahgholi M, Khadem SE, Bab S. Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mechanism and Machine Theory. 2014;82:128-140.10.1016/j.mechmachtheory.2014.08.005
  10. 10. Kaliski S. Vibration and Waves in Solids. IPPT PAN. Warsaw (in Polish). 1966.
  11. 11. Auciello NM. Vibrations of Timoshenko beams on two parameter elastic soil. Engineering Transactions. 2008; 56(3):187-200.
  12. 12. Majkut L. Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Mechanics. 2009;47(1):193-210.
  13. 13. Chan KT. Wang XQ. Free vibration of a Timoshenko beam partially loaded with distributed mass. Journal of Sound and Vibration. 1997;206:353-369.10.1006/jsvi.1997.1124
  14. 14. Awrejcewicz J, Krysko AV, Pavlov SP, Zhigalov MV, Krysko VA. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mechanical Systems and Signal Procesing. 2017;93:415-430.10.1016/j.ymssp.2017.01.047
  15. 15. Zhao TY, Cui YS, Pan HG, Yuan HQ, Yang J. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. International Journal of Mechanical Sciences. 2021;197:106335.10.1016/j.ijmecsci.2021.106335
  16. 16. Zhao TY, Cui YS, Wang YQ, Pan HG. Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass. Mechanics of Advanced Materials and Structures. 2021. https://doi.org/10.1080/15376494.2021.1904525.
  17. 17. Zhao TY, Jiang LP, Pan HG, Yang J, Kitipornchai S. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Composite Structures. 2021; 262:113362.10.1016/j.compstruct.2020.113362
  18. 18. Zhao TY, Jiang LP, Yu YX, Wang YQ. Study on theoretical modeling and mechanical performance of a spinning porous graphene nano-platelet reinforced beam attached with double blades. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2022.2035862; 2022.
  19. 19. Awrejcewicz J, Krysko VA, Pavlov SP, Zhigalov MV, Kalutsky LA, Krysko VA. Thermoelastic vibrations of a Timoshenko microbeam based on the modified coupe stress theory. Nonlinear Dynamics. 2020;99:919-943.10.1007/s11071-019-04976-w
  20. 20. Qatu MS, Iqbal J. Transverse vibration of a two-segment cross-ply composite shafts with a lumped mass. Composite Structures. 2010;92:1126-1131.10.1016/j.compstruct.2009.10.007
  21. 21. Arab SB, Rodrigues JD, Bouaziz S, Haddar M. Dynamic analysis of laminated rotors using a layerwise theory. Composite Structures. 2017;182:335-345.10.1016/j.compstruct.2017.09.033
  22. 22. Myklestad NO. A new method of calculating natural modes of coupled bending vibration of airplane wings and other types of beams. Journal of Aeronautical Science. 1944;11:153-162.10.2514/8.11116
  23. 23. Wu JS, Yang IH. Computer method for torsion and flexure coupled forced vibration of shafting system with damping. Journal of Sound and Vibration. 1995;180. (3):417-435.10.1006/jsvi.1995.0088
  24. 24. Yang M, Zhou X, Zhang W, Ye J, Hu Y. A modified transfer matrix method for bending vibration of CFRP/Steel composite transmission shafting. Archive of Applied Mechanics. 2020;90:603-614.10.1007/s00419-019-01628-8
  25. 25. Farshidianfar A, Soheili S, Abachizadeh M. Flexural vibration of Timoshenko beams. using distributed lumped modeling technique. Aerospace Mechanics Journal. 2008;4(1):75-84.
  26. 26. Soheili S. Abachizadeh M. Flexural vibration of multistep rotating Timoshenko shafts using hybrid modeling and optimization techniques. Journal of Vibration and Control. https://doi.org/10.1177/10775463211072406; 2022.
DOI: https://doi.org/10.2478/ama-2022-0026 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 215 - 224
Submitted on: Mar 29, 2022
Accepted on: May 12, 2022
Published on: Jul 1, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Stanisław Noga, Edward Rejman, Paweł Bałon, Bartłomiej Kiełbasa, Robert Smusz, Janusz Szostak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.