1. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA - Journal of the American Medical Association. 2019;322(13):1294–1304. doi: 10.1001/jama.2019.1474510.1001/jama.2019.14745
2. Coresh J. Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. American Journal of Kidney Diseases. 2003;41(1):1–12. doi: 10.1053/ajkd.2003.50007.10.1053/ajkd.2003.50007
3. Tuominen TK, Jämsä T, Oksanen J, Tuukkanen J, Gao TJ, Lindholm TS, Jalovaara PK. Composite implant composed of hydroxyapatite and bone morphogenetic protein in the healing of a canine ulnar defect. Annales Chirurgiae et Gynaecologiae. 2001;90(1):32-36.10.1007/s002640000208
5. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: Global dimension and perspectives. The Lancet: series Global Kindey Disease. 2013;382(9888):260–272.10.1016/S0140-6736(13)60687-X
7. Kunwar V, Chandel K, Sabitha AS, Bansal A. Chronic Kidney Disease analysis using data mining classification techniques. 6th International Conference - CloudSystem and Big Data Engineering (Confluence). 2016;300–305. doi: 10.1109/CONFLUENCE.2016.7508132.10.1109/CONFLUENCE.2016.7508132
8. Manonmani M, Balakrishnan S. Feature Selection Using Improved Teaching Learning Based Algorithm on Chronic Kidney Disease Dataset. Procedia Computer Science. 2020;171(2019):1660–1669. doi: 10.1016/j.procs.2020.04.17810.1016/j.procs.2020.04.178
10. Avci E, Karakus S, Ozmen O, Avci D. Performance comparison of some classifiers on Chronic Kidney Disease data. 6th International Symposium on Digital Forensic and Security (ISDFS). 2018;1-4. doi: 10.1109/ISDFS.2018.8355392.10.1109/ISDFS.2018.8355392
12. Akben SB. Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History. IRBM. 2018;39(5):353–358. doi: 10.1016/j.irbm.2018.09.004.10.1016/j.irbm.2018.09.004
15. Jujo K, Minami Y, Haruki S, Matsue Y, Shimazaki K, Kadowaki H, Ishida I, Kambayashi K, Arashi H, Sekiguchi H, Hagiwara N. Persistent high blood urea nitrogen level is associated with increased risk of cardiovaserum creatinineular events in patients with acute heart failure. ESC Heart Failure, 2017;4(4):545–553.10.1002/ehf2.12188569517729154415
25. An TK, Kim MH. A new Diverse AdaBoost classifier. Artificial Intelligence and Computational Intelligence. 2010;1:359–363. doi: 10.1109/AICI.2010.82.10.1109/AICI.2010.82
26. Kegl B, Introduction to AdaBoost. 2014. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.8866&rep=rep1&type=pdf, 10 October 2021.
27. Zeng ZQ, Yu H Bin, Xu HR, Xie YQ, Gao J. Fast training Support Vector Machines using parallel Sequential Minimal Optimization. rd International Conference on Intelligent System and Knowledge Engineering. 2008;997–1001. doi: 10.1109/ISKE.2008.4731075.10.1109/ISKE.2008.4731075
29. Kumar Y, Sahoo G. Analysis of Parametric & Non Parametric Classifiers for Classification Technique using WEKA. International Journal of Information Technology and Computer Science 2012; 4(7):43–9. doi: 10.5815/ijitcs.2012.07.06.10.5815/ijitcs.2012.07.06
31. Saravana N, Gayathri V. Performance and Classification Evaluation of J48 Algorithm and Kendall’s Based J48 Algorithm (KNJ48). International Journal of Computer Trends and Technology. 2018;59(2):73–80. doi: 10.14445/22312803/ijctt-v59p112.10.14445/22312803/IJCTT-V59P112
32. Waseem S, Salman A, Muhammad AK. Feature subset selection using association rule mining and JRip classifier. International Journal of Physical Sciences. 2013;8(18):885–96. doi: 10.5897/ijps2013.3842.10.5897/IJPS2013.3842
33. Lewis RJ, Ph D, Street WC. An Introduction to Classification and Regression Tree (CART) Analysis. 2000. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.4103&rep=rep1&type=pdf, 10 October 2021.
34. Frank E, Witten IH. Generating accurate rule sets without global optimization. Hamilton, New Zealand: University of Waikato, Department of Computer Science. 1998.
35. Kalmegh S. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News. International Journal of Innovative Science, Engineering & Technology. 2015;2(2):438–446.
38. Novakovic J, Veljovi A, Iiic S, Papic Z, Tomovic M. Evaluation of Classification Models in Machine Learning. Theory and Applications of Mathematics & Computer Science. 2017;7(1):39–46.
40. Maimon O, Rokach L. [ed.] Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers. Berlin, Springer. 2005.10.1007/b107408
41. Ras ZW, Dardzinska A. Action Rules Discovery Based on Tree Classifiers and Meta-actions. Lecture Notes in Artificial Intelligence. 2009;5722;66–75.10.1007/978-3-642-04125-9_10
43. Jongbo OA. Adetunmb AO, Ogunrinde RB, Badeji-Ajisafe B. Development of an ensemble approach to chronic kidney disease diagnosis. Scientific African, 2020;8:e00456. doi: 10.1016/j.sciaf.2020.e0045610.1016/j.sciaf.2020.e00456