Have a personal or library account? Click to login
Bearing Fault Detection and Diagnosis Based on Densely Connected Convolutional Networks Cover

Bearing Fault Detection and Diagnosis Based on Densely Connected Convolutional Networks

Open Access
|Mar 2022

References

  1. 1. Zhang S, Zhang S, Wang B, Habetler TG. Deep Learning Algorithms for Bearing Fault Diagnosticsx - A Comprehensive Review. IEEE Access. 2020;8:29857–81.10.1109/ACCESS.2020.2972859
  2. 2. Zhang Z, Li H, Chen L, Han P. Shrinkage Networks. 2021;2021(Dl).10.1155/2021/9942249
  3. 3. Neupane D, Seok J. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review. IEEE Access. 2020;8:93155–78.10.1109/ACCESS.2020.2990528
  4. 4. Li G, Tang G, Luo G, Wang H. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition. Mech Syst Signal Process. 2019;120:83–97. https://doi.org/10.1016/j.ymssp.2018.10.01610.1016/j.ymssp.2018.10.016
  5. 5. Huang T, Fu S, Feng H, Kuang J. Bearing fault diagnosis based on shallow multi-scale convolutional neural network with attention. Energies. 2019;12(20).10.3390/en12203937
  6. 6. Awadallah MA, Morcos MM. Application of AI tools in fault diagnosis of electrical machines and drives - An overview. IEEE Trans Energy Convers. 2003;18(2):245–51.10.1109/TEC.2003.811739
  7. 7. Batista L, Badri B, Sabourin R, Thomas M. A classifier fusion system for bearing fault diagnosis. Expert Syst Appl [Internet]. 2013;40(17):6788–97. http://dx.doi.org/10.1016/j.eswa.2013.06.03310.1016/j.eswa.2013.06.033
  8. 8. Liu R, Yang B, Zio E, Chen X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech Syst Signal Process. 2018;108:33–47. https://doi.org/10.1016/j.ymssp.2018.02.01610.1016/j.ymssp.2018.02.016
  9. 9. Bansal N, Sharma A, Singh RK. A Review on the Application of Deep Learning in Legal Domain. IFIP Adv Inf Commun Technol. 2019;559:374–81.10.1007/978-3-030-19823-7_31
  10. 10. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep Learning and Its Applications to Machine Health Monitoring: A Survey. 2016;14(8):1–14. Available from: http://arxiv.org/abs/1612.07640
  11. 11. Brownlee J. What is Deep Learning? August 14, 2020. Available from: https://machinelearningmastery.com/what-is-deep-learning/, October 15 2021.
  12. 12. Great Learning Team. Introduction to Resnet or Residual Network. Sep 28. 2020, Available online: https://www.mygreatlearning.com/blog/resnet/, October 15, 2021. 2021;2021.
  13. 13. Sahoo B. Fault Diagnosis using Deep Learning on raw time domain data. July 15 2020. Available on line: https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/Deep_learning_based_fault_diagnosis_using_CNN_on_raw_time_domain_data.2021.
  14. 14. Chen Z, Cen J, Xiong J. Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network. 2020;8.10.1109/ACCESS.2020.3016888
  15. 15. Singhal G. Introduct ion to DenseNet with TensorFlow. May 6, 2020, Available online: https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow, October 25, 2021.
  16. 16. Si L, Xiong X, Wang Z. Tan C. A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining Face. Math Probl Eng. 2020.10.1155/2020/2616510
  17. 17. Guo X, Chen L, Shen C. Application To Bearing Fault Diagnosis. Measurement [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.measurement.2016.07.05410.1016/j.measurement.2016.07.054
  18. 18. Janssens O, Slavkovikj V, Vervisch B, Stockman K, Loccufier M, Verstockt S, et al. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J Sound Vib. 2016;377:331–45.10.1016/j.jsv.2016.05.027
  19. 19. Liu R, Meng G, Yang B, Sun C, Chen X. Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault Diagnosis Approach for Electric Machine. IEEE Trans Ind Informatics. 2017;13(3):1310–20.10.1109/TII.2016.2645238
  20. 20. Lu C, Wang Z, Zhou B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv Eng Informatics. 2017;32:139–51.10.1016/j.aei.2017.02.005
  21. 21. Wang H, Xu J, Yan R, Sun C, Chen X. Intelligent bearing fault diagnosis using multi-head attention-based CNN. Procedia Manuf. 2020;49:112–8. https://doi.org/10.1016/j.promfg.2020.07.00510.1016/j.promfg.2020.07.005
  22. 22. Zilong Z, Wei Q. Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification. ICNSC 2018 - 15th IEEE Int Conf Networking, Sens Control. 2018;(April):1–6.10.1109/ICNSC.2018.8361296
  23. 23. Li S, Liu G, Tang X, Lu J, Hu J. An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis. Sensors (Switzerland). 2017;17(8).10.3390/s17081729557993128788099
  24. 24. Magar R, Ghule L, Li J, Zhao Y, Farimani AB. FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification. IEEE Access. 2021;9(October):25189–99.10.1109/ACCESS.2021.3056944
  25. 25. Guo S, Yang T, Gao W, Zhang C, Zhang Y. An intelligent fault diagnosis method for bearings with variable rotating speed based on pythagorean spatial pyramid pooling CNN. Sensors (Switzerland). 2018;18(11).10.3390/s18113857626372230424001
  26. 26. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition. CVPR 2017. 2017:2261–9.10.1109/CVPR.2017.243
DOI: https://doi.org/10.2478/ama-2022-0017 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 130 - 135
Submitted on: Dec 18, 2021
Accepted on: Feb 12, 2022
Published on: Mar 24, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Julius Niyongabo, Yingjie Zhang, Jérémie Ndikumagenge, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.