References
- 1. Zhang S, Zhang S, Wang B, Habetler TG. Deep Learning Algorithms for Bearing Fault Diagnosticsx - A Comprehensive Review. IEEE Access. 2020;8:29857–81.10.1109/ACCESS.2020.2972859
- 2. Zhang Z, Li H, Chen L, Han P. Shrinkage Networks. 2021;2021(Dl).10.1155/2021/9942249
- 3. Neupane D, Seok J. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review. IEEE Access. 2020;8:93155–78.10.1109/ACCESS.2020.2990528
- 4. Li G, Tang G, Luo G, Wang H. Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition. Mech Syst Signal Process. 2019;120:83–97. https://doi.org/10.1016/j.ymssp.2018.10.01610.1016/j.ymssp.2018.10.016
- 5. Huang T, Fu S, Feng H, Kuang J. Bearing fault diagnosis based on shallow multi-scale convolutional neural network with attention. Energies. 2019;12(20).10.3390/en12203937
- 6. Awadallah MA, Morcos MM. Application of AI tools in fault diagnosis of electrical machines and drives - An overview. IEEE Trans Energy Convers. 2003;18(2):245–51.10.1109/TEC.2003.811739
- 7. Batista L, Badri B, Sabourin R, Thomas M. A classifier fusion system for bearing fault diagnosis. Expert Syst Appl [Internet]. 2013;40(17):6788–97. http://dx.doi.org/10.1016/j.eswa.2013.06.03310.1016/j.eswa.2013.06.033
- 8. Liu R, Yang B, Zio E, Chen X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech Syst Signal Process. 2018;108:33–47. https://doi.org/10.1016/j.ymssp.2018.02.01610.1016/j.ymssp.2018.02.016
- 9. Bansal N, Sharma A, Singh RK. A Review on the Application of Deep Learning in Legal Domain. IFIP Adv Inf Commun Technol. 2019;559:374–81.10.1007/978-3-030-19823-7_31
- 10. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep Learning and Its Applications to Machine Health Monitoring: A Survey. 2016;14(8):1–14. Available from: http://arxiv.org/abs/1612.07640
- 11. Brownlee J. What is Deep Learning? August 14, 2020. Available from: https://machinelearningmastery.com/what-is-deep-learning/, October 15 2021.
- 12. Great Learning Team. Introduction to Resnet or Residual Network. Sep 28. 2020, Available online: https://www.mygreatlearning.com/blog/resnet/, October 15, 2021. 2021;2021.
- 13. Sahoo B. Fault Diagnosis using Deep Learning on raw time domain data. July 15 2020. Available on line: https://github.com/biswajitsahoo1111/cbm_codes_open/blob/master/notebooks/Deep_learning_based_fault_diagnosis_using_CNN_on_raw_time_domain_data.2021.
- 14. Chen Z, Cen J, Xiong J. Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network. 2020;8.10.1109/ACCESS.2020.3016888
- 15. Singhal G. Introduct ion to DenseNet with TensorFlow. May 6, 2020, Available online: https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow, October 25, 2021.
- 16. Si L, Xiong X, Wang Z. Tan C. A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining Face. Math Probl Eng. 2020.10.1155/2020/2616510
- 17. Guo X, Chen L, Shen C. Application To Bearing Fault Diagnosis. Measurement [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.measurement.2016.07.05410.1016/j.measurement.2016.07.054
- 18. Janssens O, Slavkovikj V, Vervisch B, Stockman K, Loccufier M, Verstockt S, et al. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J Sound Vib. 2016;377:331–45.10.1016/j.jsv.2016.05.027
- 19. Liu R, Meng G, Yang B, Sun C, Chen X. Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault Diagnosis Approach for Electric Machine. IEEE Trans Ind Informatics. 2017;13(3):1310–20.10.1109/TII.2016.2645238
- 20. Lu C, Wang Z, Zhou B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv Eng Informatics. 2017;32:139–51.10.1016/j.aei.2017.02.005
- 21. Wang H, Xu J, Yan R, Sun C, Chen X. Intelligent bearing fault diagnosis using multi-head attention-based CNN. Procedia Manuf. 2020;49:112–8. https://doi.org/10.1016/j.promfg.2020.07.00510.1016/j.promfg.2020.07.005
- 22. Zilong Z, Wei Q. Intelligent fault diagnosis of rolling bearing using one-dimensional multi-scale deep convolutional neural network based health state classification. ICNSC 2018 - 15th IEEE Int Conf Networking, Sens Control. 2018;(April):1–6.10.1109/ICNSC.2018.8361296
- 23. Li S, Liu G, Tang X, Lu J, Hu J. An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis. Sensors (Switzerland). 2017;17(8).10.3390/s17081729557993128788099
- 24. Magar R, Ghule L, Li J, Zhao Y, Farimani AB. FaultNet: A Deep Convolutional Neural Network for Bearing Fault Classification. IEEE Access. 2021;9(October):25189–99.10.1109/ACCESS.2021.3056944
- 25. Guo S, Yang T, Gao W, Zhang C, Zhang Y. An intelligent fault diagnosis method for bearings with variable rotating speed based on pythagorean spatial pyramid pooling CNN. Sensors (Switzerland). 2018;18(11).10.3390/s18113857626372230424001
- 26. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition. CVPR 2017. 2017:2261–9.10.1109/CVPR.2017.243