Have a personal or library account? Click to login
Method for Enhanced Accuracy in Machining Free-Form Surfaces on CNC Milling Machines Cover

Method for Enhanced Accuracy in Machining Free-Form Surfaces on CNC Milling Machines

By: Andrzej Werner  
Open Access
|Mar 2022

References

  1. 1. Ramesh R, Mannan MA, Poo AN. Error compensation in machine tools - a review. Part I: geometric, cutting-force induced and fixture dependent errors. Int J Mach Tool Manu. 2000; 40: 1235–1256.10.1016/S0890-6955(00)00009-2
  2. 2. Ramesh R, Mannan MA, Poo AN. Error compensation in machine tools - a review. Part II: thermal errors. Int J Mach Tool Manu. 2000; 40: 1257–1284.10.1016/S0890-6955(00)00010-9
  3. 3. Wenjie T, Weiguo G, Dawei Z, et al. A general approach for error modeling of machine tools. Int J Mach Tool Manu. 2014; 79: 17–23.10.1016/j.ijmachtools.2014.01.003
  4. 4. Zuriani U, Ahmed A, Sarhan, Mardi NA, et al. Measuring of positioning, circularity and static errors of a CNC Vertical Machining Centre for validating the machining accuracy. Measurement. 2015; 61: 39–50.10.1016/j.measurement.2014.10.025
  5. 5. Zhouxiang J, Bao S, Xiangdong Z et al. On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor. Int J Mach Tool Manu. 2015; 95: 1–12.10.1016/j.ijmachtools.2015.05.004
  6. 6. Ibaraki S, Sawada M, Matsubara A, et al. Machining tests to identify kinematic errors on five-axis machine tools. Prec Eng. 2010; 34: 387–398.10.1016/j.precisioneng.2009.09.007
  7. 7. Zhengchun Du, Shujie Zhang, Maisheng H. Development of a multi-step measuring method for motion accuracy of NC machine tools based on cross grid encoder. Int J Mach Tool Manu. 2010; 50: 270–280.10.1016/j.ijmachtools.2009.11.010
  8. 8. Vahebi Nojedeh M, Habibi M, Arezoo B. Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tool Manu. 2011; 51:471–482.10.1016/j.ijmachtools.2011.02.005
  9. 9. Xiaoyan Z, Beizhi L, Jianguo Y, et al. Integrated geometric error compensation of machining processes on CNC machine tool. Procedia CIRP. 2013; 8: 135–140.10.1016/j.procir.2013.06.078
  10. 10. Lasemi A, Xue D, Gu P. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar. Measurement Science and Technology. 2016; 27 (5): 055004.10.1088/0957-0233/27/5/055004
  11. 11. Zhang X, Zhang J, Zheng X, Pang B, Zhao W. Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP Journal of Manufacturing Science and Technology. 2017; 19: 106-116.10.1016/j.cirpj.2017.06.003
  12. 12. Kim YJ, Elber G, Barton M, Pottmann H. Precise gouging-free tool orientations for 5-axis CNC machining. Computer-Aided Design. 2015; 58: 220-229.10.1016/j.cad.2014.08.010
  13. 13. Barton M, Bizzarri M, Rist F, Sliusarenko O, Pottmann H. Geometry and tool motion planning for curvature adapted CNC machining. ACM Transactions on Graphics. 2021 Aug; 40 (4): 1–16. https://doi.org/10.1145/3450626.345983710.1145/3450626.3459837
  14. 14. Hansel A, Yamazaki K, Konishi K. Improving CNC machine tool geometric precision using manufacturing process analysis techniques. Procedia CIRP. 2014; 14: 263–268.10.1016/j.procir.2014.03.111
  15. 15. Habibi M, Arezoo B, Vahebi Nojedeh M. Tool deflection and geometrical error compensation by tool path modification, Int J Mach Tool Manu. 2011: 51: 439–449.10.1016/j.ijmachtools.2011.01.009
  16. 16. Ryu SH, Chu CN. The form error reduction in side wall machining using successive down and up milling. Int J Mach Tool Manu. 2005; 45: 1523–1530.10.1016/j.ijmachtools.2005.01.027
  17. 17. Yang MY, Choi JG. A tool deflection compensation system for end milling accuracy improvement. J Manuf Sci Eng. 1998; 120: 222–229.10.1115/1.2830117
  18. 18. Landon Y, Segonds S, Mousseigne M, et al. Correction of milling tool paths by tool positioning defect compensation. Proc Inst Mec. Eng B. 2003; 217: 1063–1073.10.1177/095440540321700804
  19. 19. Myeong-Woo Cho, Tae-il Seo, Hyuk-Dong Kwon. Integrated error compensation method using OMM system for profile milling operations. J Mater Process Techol. 2003; 136: 88–99.10.1016/S0924-0136(02)00943-3
  20. 20. Poniatowska M, Werner A. Fitting spatial models of geometric deviations of free-form surfaces determined in coordinate measurements. Metrol Meas Syst. 2010; 17: 599–610.10.2478/v10178-010-0049-x
  21. 21. Poniatowska M, Werner A. Simulation tests of the method for determining a CAD model of free-form surface deterministic deviations. Metrol Meas Syst. 2012; 19: 151-158.10.2478/v10178-012-0014-y
  22. 22. Poniatowska M. Free-form surface machining error compensation applying 3D CAD machining pattern model. Comput Aided Design. 2015; 62: 227–235.10.1016/j.cad.2014.12.003
  23. 23. Werner A, Skalski K, Piszczatowski S, et al. Reverse engineering of free-form surfaces. J Mater Process Technol. 1998; 76: 128-132.10.1016/S0924-0136(97)00340-3
  24. 24. Kawasaki T, Jayaraman PK, Shida K, et al. An image processing approach to feature-preserving B-spline surface fairing. Comput Aided Design. 2018; 99: 1–10.10.1016/j.cad.2018.01.003
  25. 25. Wang Z, Wang H. Image smoothing with generalized random walks: Algorithm and applications. Appl Soft Comput 2016; 46: 792–804.10.1016/j.asoc.2016.01.003
DOI: https://doi.org/10.2478/ama-2022-0013 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 103 - 110
Submitted on: Oct 29, 2021
Accepted on: Jan 22, 2022
Published on: Mar 16, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Andrzej Werner, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.