Have a personal or library account? Click to login
Theoretical and Empirical Improvement of a Fast-Switching Electro-Pneumatic Valve by Using Different Methods Cover

Theoretical and Empirical Improvement of a Fast-Switching Electro-Pneumatic Valve by Using Different Methods

Open Access
|Mar 2022

References

  1. 1. Boubakir A, Labiod L, Boudjema F. Direct adaptive fuzzy position controller for an electropneumatic actuator: Design and experimental evaluation. Mechanical Systems and Signal Processing. 2021;147. https://doi.org/10.1016/j.ymssp.2020.107066.10.1016/j.ymssp.2020.107066
  2. 2. Najjari B, Barakati SM, Mohammadi A, Fotuhi MJ. Bostanian M. Position control of an electropneumatic system based on PWM technique and FLC, ISA Transaction. 2014;53(2):647–657. https://doi.org/10.1016/j.isatra.2013.12.02310.1016/j.isatra.2013.12.023
  3. 3. Miha P, Niko H. Closed-loop volume flow control algorithm for fast switching pneumatic valves with PWM signal, Control Engineering Practice. 2018;70:114–120. https://doi.org/10.1016/j.conengprac.2017.10.00810.1016/j.conengprac.2017.10.008
  4. 4. Vinit S, Hitensinh V, Shk Madeenav L, Bikash RD, Anuj G. Effect of magnetic field environment on the performance of 3/2 solenoid valve, Fusion Engineering and Design. 2020;156(3):1–5. https://doi.org/10.1016/j.fusengdes.2020.11161810.1016/j.fusengdes.2020.111618
  5. 5. Taghizadeh M, Ghaffari A, Najafi F. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit, ISA Transaction. 2009; 48(4): 512–518. https://doi.org/10.1016/j.isatra.2009.05.00110.1016/j.isatra.2009.05.001
  6. 6. Keles O, Ercan Y. Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system, Control Engineering Practice. 2002;10(6): 645-654. https://doi.org/10.1016/S0967-0661(02)00021-710.1016/S0967-0661(02)00021-7
  7. 7. Situm Z, Zilic T, Essert M. High Speed Solenoid Valves in Pneumatic Servo Applications, International Conference on Control, Automation and Systems Engineering. 2007;1–6. https://doi.org/10.1109/MED.2007.443374610.1109/MED.2007.4433746
  8. 8. Stephen A, Murtaugh Jr. An introduction to time-modulated acceleration switching electro-hydraulic switching servomechanism. Journal of Basic Engineering. 1959;81(2):263–268. https://doi.org/10.1115/1.400843610.1115/1.4008436
  9. 9. Noritsugu T. Development of PWM mode electro-pneumatic servo mechanism, part I: Speed control of a pneumatic cylinder. In: J Fluid Control. 54:65-80
  10. 10. Noritsugu T. Development of PWM mode electro-pneumatic servo mechanism, part II: Position control of a pneumatic cylinder, Journal of Fluid Control. 1986; 59:65-80.
  11. 11. Muto T, Kato H, Yamada H, Suematsu Y. Digital control of an HST system with load cylinder operated by differential pulse width modulation, Digital control of an HST system with load cylinder. 1993; 1993(2): 321-326. https://doi.org/10.5739/isfp.1993.32110.5739/isfp.1993.321
  12. 12. Rao Z, Bone GM. Nonlinear Modeling and Control of Servo Pneumatic Actuators. IEEE Transactions on Control Systems Technology. 2008;16(3): https://doi.org/562–.10.1109/TCST.2007.91212756910.1109/TCST.2007.912127
  13. 13. Messina A, Giannoccaro NI, Gentile A. Experimenting and modelling the dynamics of pneumatic actuators controlled by the pulse width modulation (PWM) technique, Mechatronics. 2005;15(7):859-881. https://doi.org/10.1016/j.mechatronics.2005.01.00310.1016/j.mechatronics.2005.01.003
  14. 14. Leephakpreeda T. Fuzzy logic based PWM control and neural controlled-variable estimation of pneumatic artificial muscle actuators. Expert Systems with Applications. 2011;38(6):7837-7850. https://doi.org/10.1016/j.eswa.2010.12.12010.1016/j.eswa.2010.12.120
  15. 15. Hodgson SM, Le Q, Tavakoli M, Pham MT. Improved tracking and switching performance of an electropneumatic positioning system. Mechatronics. 2012; 22(1):1-12. https://doi.org/10.1016/j.mechatronics.2011.10.00710.1016/j.mechatronics.2011.10.007
  16. 16. Taghizadeh M, Ghaffari A, Najafi F. Modeling and identification of a solenoid valve for PWM control applications. Comptes Rendus Mécanique. 2009; 337(3): 131–140. https://doi.org/10.1016/j.crme.2009.03.00910.1016/j.crme.2009.03.009
  17. 17. Tao G, Chen HY, J YY, He ZB. Optimal design of the magnetic field of a high-speed response solenoid valve. Journal of Materials Processing Technology. 2002;129(3):555-558. https://doi.org/10.1016/S0924-0136(02)00633-710.1016/S0924-0136(02)00633-7
  18. 18. Wang Q, Yang F, Yang Q, Chen J, Guan H. Experimental analysis of new high-speed powerful digital solenoid valves. Energy Conversion and Management. 2011;52(5):2309-2313. https://doi.org/10.1016/j.enconman.2010.12.03210.1016/j.enconman.2010.12.032
  19. 19. Szente V, Vad J. Computational and Experimental Investigation on Solenoid Valve Dynamics. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings. 2001. https://doi.org/10.1109/AIM.2001.93653710.1109/AIM.2001.936537
  20. 20. Dulk I, Kovacshazy T. Modelling of a linear proportional electromagnetic actuator and possibilities of sensorless plunger position estimation. 12th International Carpathian Control Conference. 2011; 89–93. https://doi.org/10.1109/CarpathianCC.2011.594582210.1109/CarpathianCC.2011.5945822
  21. 21. Beater P. Pneumatic drives: system design, modelling and control, 4th ed. Springer. 200710.1007/978-3-540-69471-7
  22. 22. Murali MG, KK M. Modeling and PWM Control of Electro-Pneumatic Actuator for Missile Applications. In: IFAC-PapersOnLine. 2018; 51(1):237–242. https://doi.org/10.1016/j.ifacol.2018.05.05710.1016/j.ifacol.2018.05.057
  23. 23. Kuo BC, Golnaraghi MF. Automatic control systems. 3th ed. John Wiley and Sons. 2003.
  24. 24. Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design, 3th ed. John Wiley and Sons. 2005.
DOI: https://doi.org/10.2478/ama-2022-0011 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 91 - 97
Submitted on: Oct 11, 2021
Accepted on: Dec 12, 2021
Published on: Mar 16, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Behrouz Najjari, Mohammad J. Fotuhi, Mousa Vaezipour, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.