Have a personal or library account? Click to login
Determination of Hydrodynamic Power Losses in a Gearing Cover

Determination of Hydrodynamic Power Losses in a Gearing

Open Access
|Feb 2022

References

  1. 1. Ahsan SN, Aureli M. Minimization of Hydrodynamic Power Losses in Oscillating Submerged Structures by a Novel Shape-Morphing Strategy. Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. 2016; 2: 12-14.10.1115/DSCC2016-9795
  2. 2. Akin LS, Mross JJ. Theory for the Effect of Windage on the Lubricant Flow in the Tooth Spaces of Spur Gears. Journal of Engineering for Industry. 1975;97(4):1266-1272.10.1115/1.3438742
  3. 3. Amani A, Spitas C, Spitas V. Generalised non-dimensional multi-parametric involute spur gear design model considering manufacturability and geometrical compatibility. Mechanism and Machine Theory. 2017;109:250-277.10.1016/j.mechmachtheory.2016.11.012
  4. 4. Barone S. Gear Geometric Design by B-Spline Curve Fitting and Sweep Surface Modelling. Engineering with Computers. 2001;17(1):66-74.10.1007/s003660170024
  5. 5. Blok H. Hydrodynamic effects on friction in rolling with slippage. Biolwelle Joseph B. Rolling contact phenomena. Amsterdam: Elsevier; 1962.
  6. 6. Bolotovskiy I, Gurev B, Smirnov V, Shenderey B. Cylindrical involute gears in external gearing. Moskva: Mashinostroenie (in Russian); 1974.
  7. 7. Changenet C, Velex P. A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results. Journal of Mechanical Design. 2006;129(1):128-33.10.1115/1.2403727
  8. 8. Changenet C, Velex P. Housing Influence on Churning Losses in Geared Transmissions. Journal of Mechanical Design. 2008;130(6).10.1115/1.2900714
  9. 9. Changenet C, Oviedo-Marlot X, Velex P. Power Loss Predictions in Geared Transmissions Using Thermal Networks-Applications to a Six-Speed Manual Gearbox. Journal of Mechanical Design. 2005;128(3):618-625.10.1115/1.2181601
  10. 10. Chen C-F, Tsay C-B. Tooth profile design for the manufacture of helical gear sets with small numbers of teeth. International Journal of Machine Tools and Manufacture. 2005;45(12):1531-1541.10.1016/j.ijmachtools.2005.01.017
  11. 11. Chen G, Li H, Liu Y. Double-arc harmonic gear profile design and meshing analysis for multi-section conjugation. Advances in Mechanical Engineering. 2019;11(5):168781401985065.10.1177/1687814019850656
  12. 12. Chen H, Zhang X, Cai X, Ju Z, Qu C, Shi D. Computerized design, generation and simulation of meshing and contact of hyperboloidal-type normal circular-arc gears. Mechanism and Machine Theory. 2016;96:127-145.10.1016/j.mechmachtheory.2015.08.022
  13. 13. Concli F, Gorla C. Analysis of the Oil Squeezing Power Losses of a Spur Gear Pair by Mean of CFD Simulations. Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering. 2012: 1-8.10.1115/ESDA2012-82591
  14. 14. Daily JW, Nece RE. Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. Journal of Basic Engineering. 1960;82(1):217-230.10.1115/1.3662532
  15. 15. Dawson PH. Windage Loss in Larger High-Speed Gears. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering. 1984;198(1):51-59.10.1243/PIME_PROC_1984_198_007_02
  16. 16. Dawson P. High speed gear windage GEC Review. GEC Review. 1988;43(3):164-167.
  17. 17. Sheng W, Li Z, Zhang H, Zhu R. Geometry and design of spur gear drive associated with low sliding ratio. Advances in Mechanical Engineering. 2021;13(4):168781402110125.10.1177/16878140211012547
  18. 18. Franulovic M, Markovic K, Vrcan Z, Soban M. Experimental and analytical investigation of the influence of pitch deviations on the loading capacity of HCR spur gears. Mechanism and Machine Theory. 2017;117:96-113.10.1016/j.mechmachtheory.2017.07.006
  19. 19. Heingartner P, Mba D. Determination power losses in the helical gear mesh. Gear technology. 2005;22(5):32-37.
  20. 20. Hlebanja G. S-Gears for Wind Power Turbine Operating Conditions. Machine Design. 2012;4(3):123-130.
  21. 21. Gao Q, Ye J, Liu C. Design and modeling of noncircular gear with curvature radius function. Journal of Computational Methods in Sciences and Engineering. 2018;18(3):683-689.10.3233/JCM-180819
  22. 22. Ioselevich G.B. Machine parts. Moskva: Mashinostroenie (in Russian); 1988.
  23. 23. Kapelevich A. Geometry and design of involute spur gears with asymmetric teeth. Mechanism and Machine Theory. 2000;35(1):117-130.10.1016/S0094-114X(99)00002-6
  24. 24. Karpov O, Nosko P, Fil P, Nosko O, Olofsson U. Prevention of resonance oscillations in gear mechanisms using non-circular gears. Mechanism and Machine Theory. 2017;114:1-10.10.1016/j.mechmachtheory.2017.03.010
  25. 25. Senthil Kumar V, Muni D, Muthuveerappan G. Optimization of asymmetric spur gear drives to improve the bending load capacity. Mechanism and Machine Theory. 2008;43(7):829-858.10.1016/j.mechmachtheory.2007.06.006
  26. 26. Lechner G, Naunheimer H. Automotive Transmissions-Fundamentals, Selection, Design and Application. 1st ed. Berlin: Springer; 1999.
  27. 27. Litvin F. Gear theory. Moskva: Nauka (in Russian); 1968.
  28. 28. Litvin F, Lu J. Computerized simulation of generation, meshing and contact of double circular-arc helical gears. Mathematical and Computer Modelling. 1993;18(5):31-47.10.1016/0895-7177(93)90131-H
  29. 29. Litvin F, Lu J. Computerized design and generation of double circular-arc helical gears with low transmission errors. Computer Methods in Applied Mechanics and Engineering. 1995;127(1):57-86.10.1016/0045-7825(95)00849-8
  30. 30. Litvin FL, Fuentes A, Zanzi C, Pontiggia M. Design, generation, and stress analysis of two versions of geometry of face-gear drives. Mechanism and Machine Theory. 2002;37(10):1179-1211.10.1016/S0094-114X(02)00050-2
  31. 31. Mann RW, Marston CH. Friction Drag on Bladed Disks in Housings as a Function of Reynolds Number, Axial and Radial Clearance, and Blade Aspect Ratio and Solidity. Journal of Basic Engineering. 1961;83(4):719-723.10.1115/1.3662307
  32. 32. Niemann G, Winter H. Maschinenelemente. 2nd ed. Berlin (in German): Springer; 2003. (Band 2: Getriebeallgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe).10.1007/978-3-662-11873-3_2
  33. 33. Pechersky M. An analysis of fluid flow between meshing spur gear teeth. MS thesis, Pennsylvania State University, State College, PA. 1987.
  34. 34. Polly J, Talbot D, Kahraman A, Singh A, Xu H. An Experimental Investigation of Churning Power Losses of a Gearbox. Journal of Tribology. 2018;140(3): 031102.10.1115/1.4038412
  35. 35. Reshetov D. Detali mashin. Moskva: Mashinostroenie (in Russian).; 1989.
  36. 36. Seetharaman S, Kahraman A, Moorhead MD, Petry-Johnson TT. Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation. Journal of Tribology. 2009;131(2):1-9.10.1115/1.3085942
  37. 37. Shishov V, Pankratov D, Muhovatyiy O. The evaluation criteria of efficiency gearing transmission. Visnik NTU KHPI (in Russian). 2001;12:27-33.
  38. 38. Stavitskiy V, Nosko P. Opredeleniye mekhanicheskogo kpd v zubchatom zatseplenii s uchetom usloviy ekspluatatsii. Vestnik NTU «KHPI» (in Russian). 2011;51:152-164.
  39. 39. Stavitskiy V, Nosko P. Opredeleniye koeffitsiyenta poter’ moshchnosti vsledstviye szhatiya maslovozdushnoy smesi mezhdu zub’yami tsilindricheskikh peredach. Vísnik Skhídnoukr. nats. u-tu ím. V. Dalya (in Russian). 2011;5(2):313-318.
  40. 40. Stavitskiy V, Nosko P. Gidrodinamicheskoye soprotivleniye v vysokoskorostnykh zubchatykh peredachakh, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnarodniy zb. naukovikh prats’ (in Russian). 2012;43:278-85.
  41. 41. Stavitskiy V, Nosko P, Likhodeyev S. Analiz sostavlyayushchikh poter’ moshchnosti vsledstviye aerodinamicheskogo soprotivleniya vrashcheniyu zubchatykh koles, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnar. zb. naukovikh prats’ (in Russian). 2011;41:297-302.
  42. 42. Stavitskiy V, Nosko P, Fil P. Energeticheskaya effektivnost’ vysokoskorostnyh zubchatyh peredach. Luhansk: vydavnytstvo SNU im. Dalia (in Russian); 2013.
  43. 43. Tkach P, Nosko P, Boyko G, Bashta O, Bashta A. Design of worm gears with optimal geometric parameters based on minimization of losses in gearing. Problems of Friction and Wear. 2018;1(78):75-84.10.18372/0370-2197.1(78).12761
  44. 44. Tkach P, Nosko P, Bashta O, Boyko G, Tsybrii I, Gerasimova O. Gearing with increased teeth wear resistance. Problems of Friction and Wear. 2018;2(79):86-92.10.18372/0370-2197.2(79).12895
  45. 45. Zhuravlev G. Evaluation of the Hertz solution applicability in problems of the gears teeth contact. Mezhdunar. konf. Tehn. Mashinostroeniya (in Russian). 2001.
  46. 46. Zhou X, Walker P, Zhang N, Zhu B, Ruan J. Study of Power Losses in a Two-Speed Dual Clutch Transmission. SAE Technical Paper Series. 2014:1799.10.4271/2014-01-1799
DOI: https://doi.org/10.2478/ama-2022-0001 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 1 - 7
Submitted on: Jul 4, 2021
Accepted on: Sep 25, 2021
Published on: Feb 4, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Valerii Stavytskyi, Oleksandr Bashta, Pavlo Nosko, Yurii Tsybrii, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.