Have a personal or library account? Click to login
Perturbations of the Depth of Liquid Penetration Into the Capillary During Bubble Departures Cover

Perturbations of the Depth of Liquid Penetration Into the Capillary During Bubble Departures

By: Paweł Dzienis  
Open Access
|Nov 2021

References

  1. 1. Aoyama, S., Hayashi, K. Hosokawa, S., Tomiyama A., (2016), Shapes of ellipsoidal bubbles in infinite stagnant liquids Int. J. Multi-phase. Flow, 79, 23-30.
  2. 2. Augustyniak, J., Perkowski, D. M., (2021), Compound analysis of gas bubble trajectories with help of multifractal algorithm, Exp Thermal Fluid Sci., 124, 110351.
  3. 3. Cano-Lozano, J.C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., Martínez-Bazán, C., (2017), On the bubble formation under mixed injection conditions from a vertical needle. Int J Multiphase FLows. 97, 23–32.10.1016/j.ijmultiphaseflow.2017.07.016
  4. 4. Cieslinski, J.T., Mosdorf, R., (2005), Gas bubble dynamics experiment and fractal analysis, Int. J. Heat Mass Transfer 48 (9) 1808–1818.10.1016/j.ijheatmasstransfer.2004.12.002
  5. 5. Dukhin S.S., Koval’chuk V.I., Fainerman V.B., Miller R.,(1998b), Hydrodynamic processes in dynamic bubble pressure experiments Part 3. Oscillatory and aperiodic modes of pressure variation in the capillary, Colloids and Surfaces A: Physicochemical and Engineering Aspects 141, s 253–267.10.1016/S0927-7757(98)00368-9
  6. 6. Dukhin S.S., Mishchuk N.A., Fainerman V.B., Miller R., (1998a)., Hydrodynamic processes in dynamic bubble pressure experiments 2. Slow meniscus oscillations, Colloids and Surfaces A: Physicochemical and Engineering Aspects 138 s. 51–63.10.1016/S0927-7757(97)00349-X
  7. 7. Dzienis, P., Mosdorf, R., (2013), Synchronization of data recorded using acquisition stations with data from camera during the bubble departure. Adv. Sci. Technol. Res. J. 7 no 20, 29-34.
  8. 8. Dzienis, P., Mosdorf, R., (2014) Stability of periodic bubble departures at a low frequency. Chemical Engineering Science. 109, 171–182.10.1016/j.ces.2014.02.001
  9. 9. Farhat, M., Chinaud, M., Nerisson, P., Vauquelin, P., (2021), Characterization of bubbles dynamics in aperiodic formation, Int J Heat Mass Transfer, 180, 121646.10.1016/j.ijheatmasstransfer.2021.121646
  10. 10. Kass, M., Witkin, A., Terzopoulos, D., (1987), Snakes – Active Contour Models., Int. J. Comp. Vis., 1, 4, 321-331.
  11. 11. Koval’chuk V.I., Dukhin S.S., Fainerman V.B., Miller R., (1999), Hydrodynamic processes in dynamic bubble pressure experiments. 4. Calculation of magnitude and time of liquid penetration into capillaries, Colloids and Surfaces A: Physicochemical and Engineering Aspects 151, s 525–536.
  12. 12. Leifer, I., Tang, D., (2007), The acoustic signature of marine seep bubbles. J. Acoust. Soc. Am. 121, 35–40.
  13. 13. Liu, L., Yan, H., Zhao, G., (2015), Experimental studies on the shape and motion of air bubbles in viscous liquids Exp. Therm. Fluid Sci., 62, 109-121.
  14. 14. Mosdorf, R., Shoji, M.,(2003), Chaos in bubbling - nonlinear analysis and modelling, Chem. Eng. Sci. 58 (2003) 3837–3846.10.1016/S0009-2509(03)00299-9
  15. 15. Osher, S., Sethian, J. A., (1988), Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comp. Phys., 79, 1, pp. 12-49.10.1016/0021-9991(88)90002-2
  16. 16. Ruzicka M.C., R. Bunganic R., Drahoš J., (2009b), Meniscus dynamics in bubble formation. Part II: Model, Chem. Eng. Res. Des., 87, s. 1357–1365.10.1016/j.cherd.2009.03.002
  17. 17. Ruzicka, M.C., Bunganic, R. Drahos, J., (2009a), Meniscus dynamics in bubble formation. Part I: Experiment. Chem. Eng. Res. Des., 87: 1349–1356.10.1016/j.cherd.2009.03.001
  18. 18. Stanovsky P., Ruzicka M.C., Martins A., Teixeira J.A, (2011), Meniscus dynamics in bubble formation: A parametric study, Chemical Engineering Science, 66, s. 3258–3267.
  19. 19. Vázquez, A., Manasseh, R., Chicharro, R. (2015), Can acoustic emissions be used to size bubbles seeping from a sediment bed. 131, 187–196.10.1016/j.ces.2015.03.058
  20. 20. Zang L., Shoji M., (2001), Aperiodic bubble formation from a submerged orifice, Chemical Engineering Science 56, 5371-5381.10.1016/S0009-2509(01)00241-X
DOI: https://doi.org/10.2478/ama-2021-0032 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 254 - 259
Submitted on: Sep 19, 2021
Accepted on: Oct 22, 2021
Published on: Nov 29, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Paweł Dzienis, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.