Have a personal or library account? Click to login
Design of Decoupled Pi Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays Cover

Design of Decoupled Pi Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays

Open Access
|Nov 2021

References

  1. 1. Ajayi T., Oboh I. (2012), Determination Of Control Pairing for Higher Order Multi-Variable Systems by the Use of Multiple Ratios. Int, J, Eng&ScientificRes, 3(3),1–5.
  2. 2. Astrom K.J., Johansson K.H., Wang, Q.G. (2002), Design of Decoupled PI Controllers for Two-By-Two Systems. In IEE Proceedings-Control Theory and Applications, 149, 74–81.10.1049/ip-cta:20020087
  3. 3. Barker L.K. (1979), Mikhailov Stability Criterion for Time-Delayed Systems. Washington, DC.USA: NASA.
  4. 4. Barrero F., Guevara J., Vargas E., Toral S., Vargas, M. (2014), Networked Transducers in Intelligent Transportation Systems Based on The IEEE 1451 Standard. Computer Standards Interfaces, 36(2), 300–311. doi:10.1016/j.csi.2012.05.004.10.1016/j.csi.2012.05.004
  5. 5. Baruah G., Majhi S., Mahanta C. (2018), Auto-Tuning of PI Controllers for TITO Processes with Experimental Validation. International Journal of Automation and Computing, 16. doi:10.1007/s11633-018-1140-0.10.1007/s11633-018-1140-0
  6. 6. Chao G.-L., Han K.W. (1998), Robust Stability Analysis of Time-Delay Systems Using Parameter-Plane and Parameter-Space Methods. Journal of the Franklin Institute, 335(7), 1249–1262.10.1016/S0016-0032(97)00070-7
  7. 7. de Aguiar A.P.V., Barros P. (2020), Evaluation and Redesign of The Inverted Decoupler : Open and Closed-Loop Approaches. Int. J. Control Autom.Syst.,18, 1435–1444. doi:0.1007/s12555-019-0371-3.10.1007/s12555-019-0371-3
  8. 8. Elahi A., Alfi A. (2017), Finite-Time H Control of Uncertain Networked Control Systems with Randomly Varying Communication Delays. ISA transactions, 69,65–88.10.1016/j.isatra.2017.04.00428477896
  9. 9. El-Farra N., Mhaskar P. (2008), Special issue on ‘Control of Networked and Complex Process Systems’. Comput. Chem. Eng., 32(9), 1963–1963.10.1016/j.compchemeng.2008.06.003
  10. 10. Hajare V., Khandekar A., Patre B. (2017), Discrete Sliding Mode Controller with Reaching Phase Elimination for TITO Systems. ISA Transactions, 66, 32–45. doi:10.1016/j.isatra.2016.10.010.10.1016/j.isatra.2016.10.01027816180
  11. 11. Hajare V., Patre B. (2015), Decentralized PID Controller for TITO Systems Using Characteristic Ratio Assignment with An Experimental Application. ISA transactions, 59, 385–97.10.1016/j.isatra.2015.10.00826521724
  12. 12. Hamdy M., Ramadan A., Abozalam B. (2018), Comparative Study Of Different Decoupling Schemes for TITO Binary Distillation Column via PI Controller. IEEE/CAA Journal of Automatica Sinica, 5(4), 869–877. doi:10.1109/JAS.2016.7510040.10.1109/JAS.2016.7510040
  13. 13. Hazarika S., Chidambaram M. (2014), Design of Proportional Integral Controllers with Decouplers for Unstable Two Input Two Output Systems. Industrial & Engineering Chemistry Research, 53(15), 6467–6476. doi:10.1021/ie403791q.10.1021/ie403791q
  14. 14. Heris P.C., Saadatizadeh Z., Babaei E. (2019), A New Two Input-Single Output High Voltage Gain Converter with Ripple-Free Input Currents and Reduced Voltage on Semiconductors. IEEE Transactions on Power Electronics, 34(8), 7693–7702. doi:10.1109/TPEL.2018.2880493.10.1109/TPEL.2018.2880493
  15. 15. Hong L., Hongye S., Peng S., Zhan S., Zheng-Guang W. (2017), Estimation and Control for Networked Systems with Packet Losses without Acknowledgement. Springer, Cham. Switzerland. doi:10.1007/978-3-319-44212-9.10.1007/978-3-319-44212-9
  16. 16. Huang D., Nguang S. (2009), Dynamic Output Feed-Back Control for Uncertain Networked Control Systems with Random Network-Induced Delays. Int. J. Control Autom. Syst., 7(841), doi:10.1007/s12555-009-0517-9.10.1007/s12555-009-0517-9
  17. 17. Jeng J., Jian Y. (2017), Model-Free Simultaneous Design of Multiloop PID Controllers for TITO Interactive Processes with Time Delays. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 1033–1038. doi:10.23919/SICE.2017.8105580.10.23919/SICE.2017.8105580
  18. 18. Jin Q., Zhu L., Wang Q., Jiang, B. (2016), PI Controller Design for A TITO System Based on Delay Compensated Structure and Direct Synthesis. Canadian Journal of Chemical Engineering, 94(9), 1740–1754. doi:10.1002/cjce.22551.10.1002/cjce.22551
  19. 19. Jin Y., Kwak D., Kim K.J., Kwak K.S. (2014), Cyclic Prefixed Single Carrier Transmission in Intra-Vehicle Wireless Sensor Networked Control Systems.In2014 IEEE 79th Vehicular Technology Conference (VTC Spring),1–5.10.1109/VTCSpring.2014.7023158
  20. 20. Khandekar A., Patre B. (2017), Decentralized Discrete Sliding Mode Controller for TITO Processes with Time Delay with Experimental Application. International Journal of Dynamics and Control, 5, 614—-628. doi:10.1007/s40435-015-0202-1.10.1007/s40435-015-0202-1
  21. 21. Koo J., Ha D., Park D., Roh H.J., Ryu S., Kim G.H., Baek K.H., Han C. (2017), Design of Optical Emission Spectroscopy Based Plasma Parameter Controller for Real-Time Advanced Equipment Control. Computers Chemical Engineering, 100, 38–47. doi:10.1016/j.compchemeng.2017.02.009.10.1016/j.compchemeng.2017.02.009
  22. 22. Li B., Wu J., Huang L. (2016), Improved H∞ Control for Networked Control Systems with Network-Induced Delay and Packet Dropout. J. Cent. South Univ., 23(5), 1215–1223.
  23. 23. Li D.Z., He X., Song T.H., Jin, Q. (2019), Fractional Order IMC Controller Design for Two-Input-Two-Output Fractional Order System. International Journal of Control, Automation and Systems, 17. doi:10.1007/s12555-018-0129-3.10.1007/s12555-018-0129-3
  24. 24. Liu B., Liu Y. (2020), Mixed Event-Triggered Mechanism Modeling and Controlling for Networked Control Systems with Time-Varying Delays and Uncertainties. ASIAN JOURNAL OF CONTROL, 22(2), 803–817.10.1002/asjc.1951
  25. 25. Liu T., Zhang W., Gu, D. (2006), Analytical Design of Decoupling Internal Model Control (IMC) Scheme for Two-Input Two-Output (TITO) Processes with Time Delays. Industrial Engineering Chemistry Research, 45, 3149–3160. doi:10.1021/ie051129q.10.1021/ie051129q
  26. 26. Liu Y.C. (2015), Robust Synchronization of Networked Lagrangian Systems and its Applications to Multi-robot Teleoperation. IET Control Theory & Applications, 9(1),129–139.10.1049/iet-cta.2013.0914
  27. 27. Maghade D. Patre B.M. (2013), Pole Placement by PID Controllers to Achieve Time Domain Specifications for TITO Systems. Transactions of the Institute of Measurement and Control, 36, 506–522. doi:10.1177/0142331213508803.10.1177/0142331213508803
  28. 28. Mahapatro S.R. Subudhi B. (2020), A Robust Decentralized PID Controller Based on Complementary Sensitivity Function for a Multivariable System. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(10), 2024–2028. doi:10.1109/TCSII.2019.2943382.10.1109/TCSII.2019.2943382
  29. 29. Mikhailov A. (1938), Method of Harmonic Analysis in Control Theory. (in russian), A Vlomatiku 2., i Telemechllnika, 3, 27-81.
  30. 30. Mohamed Vall O.M (2020a), Artificial Neural Network-Based Smith Predictor for Compensating Random Time Delays Acting in Networked Control Systems. International Journal of Control and Automation, 13(1), 36–44.
  31. 31. Mohamed Vall O.M (2020b), PI Controller Design for Networked Control Systems with Random Time Delay. International Journal of Emerging Trends in Engineering Research,8(1),114–118. doi:10.30534/ijeter/2020/15812020.10.30534/ijeter/2020/15812020
  32. 32. Naik R.H., Kumar D., Sujatha P. (2020), Independent Controller Design for MIMO Processes Based on Extended Simplified Decoupler and Equivalent Transfer Function. Ain Shams EngineeringJournal, 11, 343–350.10.1016/j.asej.2017.10.011
  33. 33. Pang Z., Liu G., Zhou D., Sun D. (2016), Data-Based Predictive Control for Networked Nonlinear Systems with Network-Induced Delay and Packet Dropout. IEEE Transactions on Industrial Electronics, 63(2), 1249–1257.doi:10.1109/TIE.2015.2497206.10.1109/TIE.2015.2497206
  34. 34. Park P. (2015), Power Controlled Fair Access Protocol for Wireless Networked Control Systems. Wireless Networks, 21, 1499–1516.10.1007/s11276-014-0866-z
  35. 35. Park P., Khadilkar H., Balakrishnan H., Tomlin C.J. (2014), High Confidence Networked Control for Next Generation Air Transportation Systems. IEEE Transactions on Automatic Control, 59(12), 3357–3372. doi:10.1109/TAC.2014.2352011.10.1109/TAC.2014.2352011
  36. 36. Qian G., Wei P., Ruan Z., Lu J.Q. (2017), A Low-Complexity Modulation Classification Algorithm for MIMO–OSTBC System. Circuits, Systems, and Signal Processing, 36. doi:10.1007/s00034-016-0428-y.10.1007/s00034-016-0428-y
  37. 37. Sharma A., Padhy P. (2017), Design and Implementation of PID Controller for The Decoupled Two In-Put Two Output Control Process. In 2017 4th International Conference on Power, Control Embedded Systems (ICPCES), 1–6. doi:10.1109/ICPCES.2017.8117666.10.1109/ICPCES.2017.8117666
  38. 38. Siljak D. (1966), Generalization of the Parameter Plane Method. IEEE Transactions on Automatic Control, 11(1), 63–70. doi:10.1109/TAC.1966.1098230.10.1109/TAC.1966.1098230
  39. 39. Sun Y., El-Farra N. (2012), Resource Aware Quasi-Decentralized Control of Networked Process Systems over Wireless Sensor Networks. Chemical Engineering Science, 69(1),93–106. doi: https://doi.org/10.1016/j.ces.2011.10.010.10.1016/j.ces.2011.10.010
  40. 40. Tanaka Y., Ogata T., Imagawa, S. (2015), Decoupled Direct Tracking Control System Based on Use of A Virtual Track for Multilayer Disk with A Separate Guide Layer. Japan Society of Applied Physics, 54(9), 09MB03.10.7567/JJAP.54.09MB03
  41. 41. Ustoglu I., Eren Y., Soylemez, M. (2016), Stabilizing Constant Controllers for Two-Input, Two-Output Systems with Reducible and Irreducible Characteristic Equations. Transactions of the Institute of Measurement and Control, 39. doi:10.1177/0142331216645649.10.1177/0142331216645649
  42. 42. Vargas F., Silva E., Chen J. (2013), Stabilization of Two-Input Two-Output Systems over SNR-Constrained Channels. Automatica, 49, 3133–3140. doi:10.1016/j.automatica.2013.07.031.10.1016/j.automatica.2013.07.031
  43. 43. Wang Q., Huang B., Guo X. (2000), Auto-Tuning of TITO Decoupling Controllers from Step Tests. ISA Transactions, 39(4), 407–418.10.1016/S0019-0578(00)00028-8
  44. 44. Wang Y.J. (2011), Graphical Computation of Gain and Phase Margin Specifications-Oriented Robust PID Controllers for Uncertain Systems With Time-Varying Delay. Journal of Process Control, 21(4), 475–488.10.1016/j.jprocont.2011.02.003
  45. 45. Yao W., Jiang L., Wu J.W.Q., Cheng S. (2015), Wide-Area Damping Controller for Power System Inter-Area Oscillations: A Networked Predictive Control Approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. doi:10.1109/TCST.2014.2311852.10.1109/TCST.2014.2311852
  46. 46. Zhang W., Branicky M., Phillips S. (2001), Stability of Networked Control Systems. IEEE Control Systems Magazine, 21(1), 84–99. doi:10.1109/37.898794.10.1109/37.898794
  47. 47. Zhang X., Zheng Y., Lu G. (2006), Stochastic Stability of Networked Control Systems with Network-Induced Delay and Data Dropout. In Proceedings of the45th IEEE Conference on Decision and Control, 5006–5011. doi:10.1109/CDC.2006.376970.10.1109/CDC.2006.376970
  48. 48. Zhuang M., Atherton D.P. (1993), PID Controller Design for A TITO System. In 1993 American Control Conference, 3176–3177. doi:10.23919/ACC.1993.4793493.10.23919/ACC.1993.4793493
DOI: https://doi.org/10.2478/ama-2021-0026 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 201 - 208
Submitted on: May 21, 2021
Accepted on: Jul 27, 2021
Published on: Nov 29, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Ould Mohamed Mohamed Vall, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.