References
- 1. Bogdanov, O.S. (1983), Ore dressing guide. Nedra, Moscow. in Russian.
- 2. Bond, L.J., Morra, M., Greenwood, M.S., Bamberger, J.A., Pappas, R.A. (2003), Ultrasonic technologies for advanced process monitoring, measurement, and control, Proceedings of the 20th IEEE Information and Measurement Technology Conference, 2, 1288-1293.
- 3. Brazhnikov, N.I. (1975), Ultrasonic methods, Energia, Moscow. in Russian.
- 4. Debarnot, M. Le Letty, R., Lhermet, N. (2006), Ultrasonic NDT based on Lamb waves: Development of a dedicated drive and monitoring electronic, Proceedings of the 3rd EuropeanWorkshop on Structural Health Monitoring, 1207–1213.
- 5. Derkach, V.G. (1966), Special Methods for Mineral Processing. Nedra, Moscow. in Russian.
- 6. Eremenko, Y., Poleshchenko, D., Tsygankov, Y. (2019), Neural network based identification of ore processing units to develop model predictive control system, Proceedings of XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), 121-124.10.1109/CSCMP45713.2019.8976790
- 7. Eskandari, M.J., Hasanzadeh, I. (2021), Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Materials Science and Engineering B-advanced Functional Solid-State Materials, 266, 115050.10.1016/j.mseb.2021.115050
- 8. Fukumoto, T., Tanaka, Y., Sawada, T. (2019), Change of ultrasonic propagation velocity in an MR fluid under AC magnetic fields, International Journal of Applied Electromagnetics and Mechanics, 1(59), 341-347.10.3233/JAE-171174
- 9. Golik, V., Komaschenko, V., Morkun, V., Khasheva, Z. (2015a), The effectiveness of combining the stages of ore fields development, Metallurgical and Mining Industry, 7(5), 401-405.
- 10. Golik, V., Komashchenko, V., Morkun, V. (2015b), Geomechanical terms of use of the mill tailings for preparation, Metallurgical and Mining Industry, 7(4), 321-324.
- 11. Hauptmann, P., Hoppe, N., Püttmer, A. (2002), Application of ultrasonic sensors in the process industry, Measurement Science and Technology, 13 (8), R73-R83. DOI: 10.1088/0957-0233/13/8/201.10.1088/0957-0233/13/8/201
- 12. Karmazin, V.I., Karmazin, V.V. (1978), Magnetic enrichment methods, Nedra, Moscow. in Russian.
- 13. Kupin, A. (2014), Application of neurocontrol principles and classification optimization in conditions of sophisticated technological processes of beneficiation complexes, Metallurgical and Mining Industry, 6, 16–24.
- 14. Lee, C., Staszewski, W. J. (2009), Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation, Smart Materials and Structures, 12(5), 804.10.1088/0964-1726/12/5/018
- 15. Liu, B.Y., Liu, B.J., Gao, X.W., Zhang, D.S., Hao, D.Z., Li, X.Y. (2020), A soft sensor based on case-based reasoning for iron ores flotation, Ironmaking & Steelmaking, 2(47), 150-158.10.1080/03019233.2018.1497760
- 16. Lolaev, A.В., Meshkov, E.I., Kovalyova, M.A. (2018), Research and development of automated system of solids flow control in the slurry entering the tailings storage facility along a pipeline with a varying degree of filling, Sustainable Development of Mountain Territories, 10(2), 253-259. DOI: 10.21177/1998-4502-2018-10-2-253-259.10.21177/1998-4502-2018-10-2-253-259
- 17. Louisnard, O. (2012a), A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation, Ultrasonics Sonochemistry, 19(1), 56–65.10.1016/j.ultsonch.2011.06.00721764348
- 18. Louisnard, O. (2012b), A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures, Ultrasonics Sonochemistry, 19(1), 66–76.10.1016/j.ultsonch.2011.06.00821764349
- 19. Ma, L.C., Zhang, Y., Song, G.Q., Ma, Z., Lu, T.Q. (2019), Ore granularity detection and analysis system based on image processing, Proceedings of the 2019 31st Chinese Control and Decision Conference (CCDC 2019), 359-366.10.1109/CCDC.2019.8832862
- 20. Meng, Y.Y., Yan, S. (2019), Thin plate Lamb propagation rule and dispersion curve drawing based on wave theory, Surface Review and Letters, 7(26), 1850222.10.1142/S0218625X18502220
- 21. Modlo, Y.O., Semerikov, S.O., Bondarevskyi, S.L., Tolmachev, S.T., Markova, O.M., Nechypurenko, P.P. (2019), Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects, Proceedings of the 2nd International Workshop on Augmented Reality in Education (AREDU 2019), 2547, 217-240.10.31812/123456789/3677
- 22. Morkun, V., Morkun, N., Pikilnyak, A. (2014), The adaptive control for intensity of ultrasonic influence on iron ore pulp, Metallurgical and Mining Industry, 6(6), 8-11.
- 23. Morkun, V., Morkun, N., Tron, V. (2015a), Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation, Metallurgical and Mining Industry, 7(10),6-9.
- 24. Morkun, V., Morkun, N., Tron, V. (2015b), Distributed control of ore beneficiation interrelated processes under parametric uncertainty, Metallurgical and Mining Industry, 7(8), 18-21.
- 25. Morkun, V., Morkun, N., Tron, V. (2015c). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation, Metallurgical and Mining Industry, 7(7), 16-19.
- 26. Ni, L., Chen, X. (2018), Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential, Acta Physica Sinica, 20(67), 204301.10.7498/aps.67.20180561
- 27. Parekh, K., Patel, J., Upadhyay, R.V. (2015), Ultrasonic propagation: A technique to reveal field induced structure in magnetic nanofluids, Ultrasonics, 60, 126-132.10.1016/j.ultras.2015.03.00125791205
- 28. Parekh, K., Upadhyay, R.V. (2017), The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid, Journal of Magnetism and Magnetic Materials, 431, 74-78.10.1016/j.jmmm.2016.08.024
- 29. Porkuian, O., Morkun, V., Morkun, N., Tron, V., Haponenko, I., Davidkovich, A. (2020), Influence of the magnetic field on love waves propagation in the solid medium, Proceedings of IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), 761-766.10.1109/ELNANO50318.2020.9088802
- 30. Ryden, N., Park, C.B., Ulriksen, P., Miller, R.D. (2003), Lamb wave analysis for non-destructive testing of concrete plate structures, Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2003).10.4133/1.2923224
- 31. Rzhevsky, V.V., Yamshchikov, V.S. (1968), Ultrasonic monitoring and research in mining, Nedra, Moscow. in Russian.
- 32. Seip, R., VanBaren, P., Cain, C., Ebbini, E. (1996), Noninvasive real-time multipoint temperature control for ultrasound phased array treatments, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 6, 1063–1073.10.1109/58.542050
- 33. Semerikov, S., Slovak, K. (2011), Theory and methodics of mobile mathematical tools using in the process of higher mathematics teaching for students of economic specialties, Information Technologies and Learning Tools, 1(21).10.33407/itlt.v21i1.413
- 34. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzyka, I.O., Fedko, M.B., Pysmennyi, S.V. (2015), Information technologies as a component of monitoring and control of stress-deformed state of rock mass, Mining of Mineral Deposits, 2(9), 175-181.10.15407/mining09.02.175
- 35. Subhash, N., Krishnan, B. (2011), Modelling and experiments for the development of a guided wave liquid level, Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation, 240–244.
- 36. Viktorov, I.A. (1966), Physical fundamentals of the application of Rayleigh and Lamb ultrasonic waves in technology, Nauka, Moscow. in Russian.
- 37. Viktorov, I.A. (1975), Elastic waves in a solid half-space with a magnetic field, Reports of the USSR Academy of Sciences, 221(5), 1069–1072. in Russian.
- 38. Wan, Z.P., He, Z.C., Wang, X.W., Chen, B.Q., Ong, R.H., Zhao, Y.L. (2020), Heat transfer in a liquid under focused ultrasonic field, Experimental Thermal and Fluid Science, 119, 110179.10.1016/j.expthermflusci.2020.110179
- 39. Weinberg, A.K. (1966), Magnetic permeability, electrical conductivity, dielectric constant and thermal conductivity of a medium containing spherical and ellipsoidal inclusions, Reports of the USSR Academy of Sciences, 169(3), 543-546. in Russian.
- 40. Xu, Y.F., Hu, W.X. (2017), Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement, Chinese Physics B, 9(26), 094301.10.1088/1674-1056/26/9/094301
- 41. Yuan, Y., Miao, B.Y., An, Y. (2018), Cavitation clouds in gas-containing liquids block low-frequency components of ultrasonic waves, Journal of Applied Physics, 22(124), 224902.10.1063/1.5052472
- 42. Zhang, Y.H, Qian, Z.H., Wang, B. (2020), Modes control of Lamb wave in plates using meander-line electromagnetic acoustic transducers, Applied Sciences-Basel, 10(10), 3491.10.3390/app10103491
- 43. Zhao, S.N., Yao, C.Q., Zhang, Q., Chen, G.W., Yuan, Q. (2019), Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: The effects of channel dimension, solvent properties and temperature, Chemical Engineering Journal, 374, 68-78.10.1016/j.cej.2019.05.157