Have a personal or library account? Click to login
Application of Magnetic and Ultrasonic Methods for Determining Parameters of Ferromagnetic Components in Iron Ore Slurry Flows Cover

Application of Magnetic and Ultrasonic Methods for Determining Parameters of Ferromagnetic Components in Iron Ore Slurry Flows

Open Access
|Nov 2021

References

  1. 1. Bogdanov, O.S. (1983), Ore dressing guide. Nedra, Moscow. in Russian.
  2. 2. Bond, L.J., Morra, M., Greenwood, M.S., Bamberger, J.A., Pappas, R.A. (2003), Ultrasonic technologies for advanced process monitoring, measurement, and control, Proceedings of the 20th IEEE Information and Measurement Technology Conference, 2, 1288-1293.
  3. 3. Brazhnikov, N.I. (1975), Ultrasonic methods, Energia, Moscow. in Russian.
  4. 4. Debarnot, M. Le Letty, R., Lhermet, N. (2006), Ultrasonic NDT based on Lamb waves: Development of a dedicated drive and monitoring electronic, Proceedings of the 3rd EuropeanWorkshop on Structural Health Monitoring, 1207–1213.
  5. 5. Derkach, V.G. (1966), Special Methods for Mineral Processing. Nedra, Moscow. in Russian.
  6. 6. Eremenko, Y., Poleshchenko, D., Tsygankov, Y. (2019), Neural network based identification of ore processing units to develop model predictive control system, Proceedings of XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), 121-124.10.1109/CSCMP45713.2019.8976790
  7. 7. Eskandari, M.J., Hasanzadeh, I. (2021), Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation, Materials Science and Engineering B-advanced Functional Solid-State Materials, 266, 115050.10.1016/j.mseb.2021.115050
  8. 8. Fukumoto, T., Tanaka, Y., Sawada, T. (2019), Change of ultrasonic propagation velocity in an MR fluid under AC magnetic fields, International Journal of Applied Electromagnetics and Mechanics, 1(59), 341-347.10.3233/JAE-171174
  9. 9. Golik, V., Komaschenko, V., Morkun, V., Khasheva, Z. (2015a), The effectiveness of combining the stages of ore fields development, Metallurgical and Mining Industry, 7(5), 401-405.
  10. 10. Golik, V., Komashchenko, V., Morkun, V. (2015b), Geomechanical terms of use of the mill tailings for preparation, Metallurgical and Mining Industry, 7(4), 321-324.
  11. 11. Hauptmann, P., Hoppe, N., Püttmer, A. (2002), Application of ultrasonic sensors in the process industry, Measurement Science and Technology, 13 (8), R73-R83. DOI: 10.1088/0957-0233/13/8/201.10.1088/0957-0233/13/8/201
  12. 12. Karmazin, V.I., Karmazin, V.V. (1978), Magnetic enrichment methods, Nedra, Moscow. in Russian.
  13. 13. Kupin, A. (2014), Application of neurocontrol principles and classification optimization in conditions of sophisticated technological processes of beneficiation complexes, Metallurgical and Mining Industry, 6, 16–24.
  14. 14. Lee, C., Staszewski, W. J. (2009), Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation, Smart Materials and Structures, 12(5), 804.10.1088/0964-1726/12/5/018
  15. 15. Liu, B.Y., Liu, B.J., Gao, X.W., Zhang, D.S., Hao, D.Z., Li, X.Y. (2020), A soft sensor based on case-based reasoning for iron ores flotation, Ironmaking & Steelmaking, 2(47), 150-158.10.1080/03019233.2018.1497760
  16. 16. Lolaev, A.В., Meshkov, E.I., Kovalyova, M.A. (2018), Research and development of automated system of solids flow control in the slurry entering the tailings storage facility along a pipeline with a varying degree of filling, Sustainable Development of Mountain Territories, 10(2), 253-259. DOI: 10.21177/1998-4502-2018-10-2-253-259.10.21177/1998-4502-2018-10-2-253-259
  17. 17. Louisnard, O. (2012a), A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation, Ultrasonics Sonochemistry, 19(1), 56–65.10.1016/j.ultsonch.2011.06.00721764348
  18. 18. Louisnard, O. (2012b), A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures, Ultrasonics Sonochemistry, 19(1), 66–76.10.1016/j.ultsonch.2011.06.00821764349
  19. 19. Ma, L.C., Zhang, Y., Song, G.Q., Ma, Z., Lu, T.Q. (2019), Ore granularity detection and analysis system based on image processing, Proceedings of the 2019 31st Chinese Control and Decision Conference (CCDC 2019), 359-366.10.1109/CCDC.2019.8832862
  20. 20. Meng, Y.Y., Yan, S. (2019), Thin plate Lamb propagation rule and dispersion curve drawing based on wave theory, Surface Review and Letters, 7(26), 1850222.10.1142/S0218625X18502220
  21. 21. Modlo, Y.O., Semerikov, S.O., Bondarevskyi, S.L., Tolmachev, S.T., Markova, O.M., Nechypurenko, P.P. (2019), Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects, Proceedings of the 2nd International Workshop on Augmented Reality in Education (AREDU 2019), 2547, 217-240.10.31812/123456789/3677
  22. 22. Morkun, V., Morkun, N., Pikilnyak, A. (2014), The adaptive control for intensity of ultrasonic influence on iron ore pulp, Metallurgical and Mining Industry, 6(6), 8-11.
  23. 23. Morkun, V., Morkun, N., Tron, V. (2015a), Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation, Metallurgical and Mining Industry, 7(10),6-9.
  24. 24. Morkun, V., Morkun, N., Tron, V. (2015b), Distributed control of ore beneficiation interrelated processes under parametric uncertainty, Metallurgical and Mining Industry, 7(8), 18-21.
  25. 25. Morkun, V., Morkun, N., Tron, V. (2015c). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation, Metallurgical and Mining Industry, 7(7), 16-19.
  26. 26. Ni, L., Chen, X. (2018), Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential, Acta Physica Sinica, 20(67), 204301.10.7498/aps.67.20180561
  27. 27. Parekh, K., Patel, J., Upadhyay, R.V. (2015), Ultrasonic propagation: A technique to reveal field induced structure in magnetic nanofluids, Ultrasonics, 60, 126-132.10.1016/j.ultras.2015.03.00125791205
  28. 28. Parekh, K., Upadhyay, R.V. (2017), The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid, Journal of Magnetism and Magnetic Materials, 431, 74-78.10.1016/j.jmmm.2016.08.024
  29. 29. Porkuian, O., Morkun, V., Morkun, N., Tron, V., Haponenko, I., Davidkovich, A. (2020), Influence of the magnetic field on love waves propagation in the solid medium, Proceedings of IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), 761-766.10.1109/ELNANO50318.2020.9088802
  30. 30. Ryden, N., Park, C.B., Ulriksen, P., Miller, R.D. (2003), Lamb wave analysis for non-destructive testing of concrete plate structures, Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2003).10.4133/1.2923224
  31. 31. Rzhevsky, V.V., Yamshchikov, V.S. (1968), Ultrasonic monitoring and research in mining, Nedra, Moscow. in Russian.
  32. 32. Seip, R., VanBaren, P., Cain, C., Ebbini, E. (1996), Noninvasive real-time multipoint temperature control for ultrasound phased array treatments, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 6, 1063–1073.10.1109/58.542050
  33. 33. Semerikov, S., Slovak, K. (2011), Theory and methodics of mobile mathematical tools using in the process of higher mathematics teaching for students of economic specialties, Information Technologies and Learning Tools, 1(21).10.33407/itlt.v21i1.413
  34. 34. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzyka, I.O., Fedko, M.B., Pysmennyi, S.V. (2015), Information technologies as a component of monitoring and control of stress-deformed state of rock mass, Mining of Mineral Deposits, 2(9), 175-181.10.15407/mining09.02.175
  35. 35. Subhash, N., Krishnan, B. (2011), Modelling and experiments for the development of a guided wave liquid level, Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation, 240–244.
  36. 36. Viktorov, I.A. (1966), Physical fundamentals of the application of Rayleigh and Lamb ultrasonic waves in technology, Nauka, Moscow. in Russian.
  37. 37. Viktorov, I.A. (1975), Elastic waves in a solid half-space with a magnetic field, Reports of the USSR Academy of Sciences, 221(5), 1069–1072. in Russian.
  38. 38. Wan, Z.P., He, Z.C., Wang, X.W., Chen, B.Q., Ong, R.H., Zhao, Y.L. (2020), Heat transfer in a liquid under focused ultrasonic field, Experimental Thermal and Fluid Science, 119, 110179.10.1016/j.expthermflusci.2020.110179
  39. 39. Weinberg, A.K. (1966), Magnetic permeability, electrical conductivity, dielectric constant and thermal conductivity of a medium containing spherical and ellipsoidal inclusions, Reports of the USSR Academy of Sciences, 169(3), 543-546. in Russian.
  40. 40. Xu, Y.F., Hu, W.X. (2017), Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement, Chinese Physics B, 9(26), 094301.10.1088/1674-1056/26/9/094301
  41. 41. Yuan, Y., Miao, B.Y., An, Y. (2018), Cavitation clouds in gas-containing liquids block low-frequency components of ultrasonic waves, Journal of Applied Physics, 22(124), 224902.10.1063/1.5052472
  42. 42. Zhang, Y.H, Qian, Z.H., Wang, B. (2020), Modes control of Lamb wave in plates using meander-line electromagnetic acoustic transducers, Applied Sciences-Basel, 10(10), 3491.10.3390/app10103491
  43. 43. Zhao, S.N., Yao, C.Q., Zhang, Q., Chen, G.W., Yuan, Q. (2019), Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: The effects of channel dimension, solvent properties and temperature, Chemical Engineering Journal, 374, 68-78.10.1016/j.cej.2019.05.157
DOI: https://doi.org/10.2478/ama-2021-0025 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 193 - 200
Submitted on: Aug 13, 2019
Accepted on: Jul 23, 2021
Published on: Nov 29, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Vladimir Morkun, Natalia Morkun, Vitaliy Tron, Olga Porkuian, Oleksandra Serdiuk, Tetiana Sulyma, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.