Have a personal or library account? Click to login
Mathematical Modelling of Water-Based Fe3O4 Nanofluid Due to Rotating Disc and Comparison with Similarity Solution Cover

Mathematical Modelling of Water-Based Fe3O4 Nanofluid Due to Rotating Disc and Comparison with Similarity Solution

Open Access
|Sep 2021

References

  1. 1. Abo-Elkhair R.E., Bhatti M.M., Mekheimer K.S. (2021), Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au–Cu nanoparticles) with moderate Reynolds number: An expanding horizon, Int. Commun. Heat Mass Transf., 123, 105228.
  2. 2. Ali Z., Zeeshan A, Bhatti M.M., Hobiny A., Saeed T. (2021), Insight into the Dynamics of Oldroyd-B Fluid Over an Upper Horizontal Surface of a Paraboloid of Revolution Subject to Chemical Reaction Dependent on the First-Order Activation Energy, Arab. J. Sci. Eng., 1–10.10.1007/s13369-020-05324-6
  3. 3. Alsabery A.I., Ghalambaz M., Armaghani T., Chamkha, I. Hashim I., Pour M.S. (2020), Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept, Nanomaterials, 10(6), 1–22.10.3390/nano10061138735323832526982
  4. 4. Arain M.B, Bhatti M.M., Zeeshan A., Saeed T., Hobiny A. (2020), Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates, Math. Probl. Eng., 2020.
  5. 5. Attia H.A (1998), Unsteady MHD flow near a rotating porous disk with uniform suction or injection, Fluid Dyn. Res., 23(5), 283–290.
  6. 6. Attia H.A. (2007), On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating, Chem. Eng. Commun., 194(10), 1396–1407.10.1080/00986440701401545
  7. 7. Bachok N., Ishak A., Pop I. (2011), Flow and heat transfer over a rotating porous disk in a nanofluid, Phys. B Phys. Condens. Matter, 406(9), 1767–1772.10.1016/j.physb.2011.02.024
  8. 8. Bacri J.C., Perzynski R., Shliomis M.I., Burde G.I. (1995), Negative-viscosity effect in a magnetic fluid, Phys. Rev. Lett., 75(11), 2128–2131.10.1103/PhysRevLett.75.212810059221
  9. 9. Benton E.R. (1966), On the flow due to a rotating disk, J. Fluid Mech., 24(4), 781–800.10.1017/S0022112066001009
  10. 10. Bhandari A. (2020a), Study of ferrofluid flow in a rotating system through mathematical modeling, Math. Comput. Simul., 178, 290–306.10.1016/j.matcom.2020.06.018
  11. 11. Bhandari A. (2020b), Study of magnetoviscous effects on ferrofluid flow, Eur. Phys. J. Plus, 135(7), 537.10.1140/epjp/s13360-020-00563-w
  12. 12. Bhatti M.M, Marin M., Zeeshan A., Ellahi R., Abdelsalam S.I. (2020a), Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries, Front. Phys., 8(95).10.3389/fphy.2020.00095
  13. 13. Bhatti M.M., Riaz A., Zhang L., Sait S.M., Ellahi R. (2020b), Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, J. Therm. Anal. Calorim., 1–16.10.1007/s10973-020-09876-5
  14. 14. Chamkha A.J. (1996), Non-darcy hydromagnetic free convection from a cone and a wedge in porous media, Int. Commun. Heat Mass Transf., 23(6), 875–887.10.1016/0735-1933(96)00070-X
  15. 15. Chamkha A.J. (1997), MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects, Appl. Math. Model., 21(10), 603–609.10.1016/S0307-904X(97)00084-X
  16. 16. Chamkha A.J., Dogonchi A.S., Ganji D.D. (2019), Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv., 9(2), 025103.10.1063/1.5086247
  17. 17. Chaturani P., Narasimman S. (1991), Numerical solution of a micropolar fluid flow between two rotating coaxial disks, Acta Mech., 89(1-4), 133–145.
  18. 18. Cochran W.G. (1934), The flow due to a rotating disc, Math. Proc. Cambridge Philos. Soc., 30(3), 365–375.10.1017/S0305004100012561
  19. 19. Hayat T., Aziz A., Muhammad T., Alsaedi A. (2018a), Numerical treatment for Darcy–Forchheimer flow of nanofluid due to a rotating disk with convective heat and mass conditions, Int. J. Numer. Methods Heat Fluid Flow, 28(11), 2531–2550.10.1108/HFF-10-2017-0389
  20. 20. Hayat T., Qayyum S., Khan M.I., Alsaedi A. (2018b), Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids, 30(1), 017101.10.1063/1.5009611
  21. 21. Hayat T., Rashid M., Imtiaz M., Alsaedi A. (2017), Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions, Int. J. Heat Mass Transf., 113, 96–105.
  22. 22. Ijaz Khan M., Khan S.A., Hayat T., Imran Khan M., Alsaedi A. (2020), Entropy optimization analysis in MHD nanomaterials (TiO2-GO) flow with homogeneous and heterogeneous reactions, Comput. Methods Programs Biomed., 184.
  23. 23. Kelson N., Desseaux A. (2000), Note on porous rotating disk flow, ANZIAM J., 42, 837.
  24. 24. Krishna M.V., Chamkha A.J. (2020), Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium, Int. Commun. Heat Mass Transf., 113, 104494.
  25. 25. Kumar B., Seth G.D., Nandkeolyar R., Chamkha A.J. (2019), Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid, Int. J. Therm. Sci., 146, 106101.
  26. 26. Mustafa M. (2017), MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model, Int. J. Heat Mass Transf., 108, 1910–1916.
  27. 27. Odenbach S., Thurm S. (2002), Magnetoviscous Effects in Ferro-fluids, 185–201.10.1007/3-540-45646-5_10
  28. 28. Qayyum S., Hayat T., Khan M.I., Alsaedi A. (2018), Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects, J. Mol. Liq., 262, 261–274.
  29. 29. Rahman M. (1978), On the numerical solution of the flow between a rotating and a stationary disk, J. Comput. Appl. Math., 4(4), 289–293.10.1016/0771-050X(78)90028-1
  30. 30. Ram P., Bhandari A. (2013a), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002
  31. 31. Ram P., Bhandari A. (2013b), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002
  32. 32. Ram P., Bhandari A. (2013c), Negative viscosity effects on ferrofluid flow due to a rotating disk, Int. J. Appl. Electromagn. Mech., 41(4), 467–478.10.3233/JAE-121637
  33. 33. Ram P., Sharma K., Bhandari A. (2010), Effect of Porosity on Ferrofluid Flow With Rotating Disk, 6(16), 67–76.
  34. 34. Rashidi M.M., Abelman S., Mehr N.F. (2013), Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62(1), 515–525.10.1016/j.ijheatmasstransfer.2013.03.004
  35. 35. Reddy P.S., Sreedevi P., Chamkha A.J. (2017), MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction, Powder Technol., 307, 46–55.10.1016/j.powtec.2016.11.017
  36. 36. Rosensweig R.E. (1997), Ferrohydrodynamics, Dover Publications.
  37. 37. Schlichting H., Gersten K. (2017), Boundary-Layer Theor, Berlin, Heidelberg: Springer Berlin Heidelberg.10.1007/978-3-662-52919-5
  38. 38. Schultz D.H., Shah V.L. (1979), Numerical solution of laminar recirculating flow between shrouded rotating disks, Comput. Fluids, 7(2), 137–144.
  39. 39. Selimefendigil F., Chamkha A.J. (2019), MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder, Int. J. Numer. Methods Heat Fluid Flow, 30(4), 1637–1660.10.1108/HFF-10-2018-0566
  40. 40. Sheikholeslami M., Shehzad S.A. (2018), Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source, Int. J. Heat Mass Transf., 118, 182–192.
  41. 41. Shliomis M.I., Morozov K.I. (1994), Negative viscosity of ferrofluid under alternating magnetic field, Phys. Fluids, 6(8), 2855–2861.10.1063/1.868108
  42. 42. Takhar H.S., Chamkha A.J., Nath G. (2002), Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transf., 36(3), 237–246.
  43. 43. Takhar H.S., Chamkha A.J., Nath G. (2003), Unsteady mixed convection flow from a rotating vertical cone with a magnetic field, Heat Mass Transf. und Stoffuebertragung, 39(4), 297–304.
  44. 44. Thameem Basha H., Sivaraj R., Subramanyam Reddy A., Chamkha A.J. (2019), SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation – solar energy application, Eur. Phys. J. Spec. Top., 228(12), 2531–2551.10.1140/epjst/e2019-900048-x
  45. 45. Turkyilmazoglu M. (2012), MHD fluid flow and heat transfer due to a stretching rotating disk, Int. J. Therm. Sci., 51(1), 195–201.10.1016/j.ijthermalsci.2011.08.016
  46. 46. Turkyilmazoglu M. (2014), Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94, 139–146.
  47. 47. Veera Krishna M., Ameer Ahamad N., Chamkha A.J. (2020), Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate, Alexandria Eng. J., 59(2), 565–577.10.1016/j.aej.2020.01.043
  48. 48. Veera Krishna M., Chamkha A.J. (2019), Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Results Phys., 15, 102652.10.1016/j.rinp.2019.102652
DOI: https://doi.org/10.2478/ama-2021-0016 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 113 - 121
Submitted on: Jul 8, 2020
Accepted on: Jun 15, 2021
Published on: Sep 27, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Anupam Bhandari, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.