1. Abo-Elkhair R.E., Bhatti M.M., Mekheimer K.S. (2021), Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au–Cu nanoparticles) with moderate Reynolds number: An expanding horizon, Int. Commun. Heat Mass Transf., 123, 105228.
2. Ali Z., Zeeshan A, Bhatti M.M., Hobiny A., Saeed T. (2021), Insight into the Dynamics of Oldroyd-B Fluid Over an Upper Horizontal Surface of a Paraboloid of Revolution Subject to Chemical Reaction Dependent on the First-Order Activation Energy, Arab. J. Sci. Eng., 1–10.10.1007/s13369-020-05324-6
3. Alsabery A.I., Ghalambaz M., Armaghani T., Chamkha, I. Hashim I., Pour M.S. (2020), Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept, Nanomaterials, 10(6), 1–22.10.3390/nano10061138735323832526982
4. Arain M.B, Bhatti M.M., Zeeshan A., Saeed T., Hobiny A. (2020), Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates, Math. Probl. Eng., 2020.
6. Attia H.A. (2007), On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating, Chem. Eng. Commun., 194(10), 1396–1407.10.1080/00986440701401545
7. Bachok N., Ishak A., Pop I. (2011), Flow and heat transfer over a rotating porous disk in a nanofluid, Phys. B Phys. Condens. Matter, 406(9), 1767–1772.10.1016/j.physb.2011.02.024
10. Bhandari A. (2020a), Study of ferrofluid flow in a rotating system through mathematical modeling, Math. Comput. Simul., 178, 290–306.10.1016/j.matcom.2020.06.018
12. Bhatti M.M, Marin M., Zeeshan A., Ellahi R., Abdelsalam S.I. (2020a), Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries, Front. Phys., 8(95).10.3389/fphy.2020.00095
13. Bhatti M.M., Riaz A., Zhang L., Sait S.M., Ellahi R. (2020b), Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, J. Therm. Anal. Calorim., 1–16.10.1007/s10973-020-09876-5
14. Chamkha A.J. (1996), Non-darcy hydromagnetic free convection from a cone and a wedge in porous media, Int. Commun. Heat Mass Transf., 23(6), 875–887.10.1016/0735-1933(96)00070-X
15. Chamkha A.J. (1997), MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects, Appl. Math. Model., 21(10), 603–609.10.1016/S0307-904X(97)00084-X
16. Chamkha A.J., Dogonchi A.S., Ganji D.D. (2019), Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv., 9(2), 025103.10.1063/1.5086247
17. Chaturani P., Narasimman S. (1991), Numerical solution of a micropolar fluid flow between two rotating coaxial disks, Acta Mech., 89(1-4), 133–145.
19. Hayat T., Aziz A., Muhammad T., Alsaedi A. (2018a), Numerical treatment for Darcy–Forchheimer flow of nanofluid due to a rotating disk with convective heat and mass conditions, Int. J. Numer. Methods Heat Fluid Flow, 28(11), 2531–2550.10.1108/HFF-10-2017-0389
20. Hayat T., Qayyum S., Khan M.I., Alsaedi A. (2018b), Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids, 30(1), 017101.10.1063/1.5009611
21. Hayat T., Rashid M., Imtiaz M., Alsaedi A. (2017), Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions, Int. J. Heat Mass Transf., 113, 96–105.
22. Ijaz Khan M., Khan S.A., Hayat T., Imran Khan M., Alsaedi A. (2020), Entropy optimization analysis in MHD nanomaterials (TiO2-GO) flow with homogeneous and heterogeneous reactions, Comput. Methods Programs Biomed., 184.
24. Krishna M.V., Chamkha A.J. (2020), Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium, Int. Commun. Heat Mass Transf., 113, 104494.
25. Kumar B., Seth G.D., Nandkeolyar R., Chamkha A.J. (2019), Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid, Int. J. Therm. Sci., 146, 106101.
28. Qayyum S., Hayat T., Khan M.I., Alsaedi A. (2018), Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects, J. Mol. Liq., 262, 261–274.
29. Rahman M. (1978), On the numerical solution of the flow between a rotating and a stationary disk, J. Comput. Appl. Math., 4(4), 289–293.10.1016/0771-050X(78)90028-1
30. Ram P., Bhandari A. (2013a), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002
31. Ram P., Bhandari A. (2013b), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002
32. Ram P., Bhandari A. (2013c), Negative viscosity effects on ferrofluid flow due to a rotating disk, Int. J. Appl. Electromagn. Mech., 41(4), 467–478.10.3233/JAE-121637
34. Rashidi M.M., Abelman S., Mehr N.F. (2013), Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62(1), 515–525.10.1016/j.ijheatmasstransfer.2013.03.004
35. Reddy P.S., Sreedevi P., Chamkha A.J. (2017), MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction, Powder Technol., 307, 46–55.10.1016/j.powtec.2016.11.017
40. Sheikholeslami M., Shehzad S.A. (2018), Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source, Int. J. Heat Mass Transf., 118, 182–192.
42. Takhar H.S., Chamkha A.J., Nath G. (2002), Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transf., 36(3), 237–246.
43. Takhar H.S., Chamkha A.J., Nath G. (2003), Unsteady mixed convection flow from a rotating vertical cone with a magnetic field, Heat Mass Transf. und Stoffuebertragung, 39(4), 297–304.
44. Thameem Basha H., Sivaraj R., Subramanyam Reddy A., Chamkha A.J. (2019), SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation – solar energy application, Eur. Phys. J. Spec. Top., 228(12), 2531–2551.10.1140/epjst/e2019-900048-x
45. Turkyilmazoglu M. (2012), MHD fluid flow and heat transfer due to a stretching rotating disk, Int. J. Therm. Sci., 51(1), 195–201.10.1016/j.ijthermalsci.2011.08.016
47. Veera Krishna M., Ameer Ahamad N., Chamkha A.J. (2020), Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate, Alexandria Eng. J., 59(2), 565–577.10.1016/j.aej.2020.01.043
48. Veera Krishna M., Chamkha A.J. (2019), Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Results Phys., 15, 102652.10.1016/j.rinp.2019.102652