Have a personal or library account? Click to login
Development of a Testing Station for Empirical Verification of the Algebraic Model of Dry Ice Piston Extrusion Cover

Development of a Testing Station for Empirical Verification of the Algebraic Model of Dry Ice Piston Extrusion

By:
Open Access
|Sep 2021

References

  1. 1. Arendarski J (2006), Measurement uncertainty (in Polish), Warsaw University of Technology Publisher.
  2. 2. Dudziak M, Kołodziej A, Domek G., et al. (2017), Multi-angularity – identification of parameters and compatibility conditions of the axisymmetric connection with form deviations Procedia Engineering, vol. 177 431-438.
  3. 3. Dong S., Song B., Hansz B., et al. (2012), Modeling of dry ice blasting and its application in thermal spray, Material Research Innovations, Vol. 16, 61-66.
  4. 4. Dong S., Song B., Hansz B., et al., (2013), Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats, Journal of Thermal Spray Technology, Vol. 22, No. 1, https://doi.org/10.1007/s11666-012-9845-z.10.1007/s11666-012-9845-z
  5. 5. Dzido A., Krawczyk P., Kurkus-Gruszecka M., et al. (2019) Analysis of the Liquid Natural Gas Energy Storage basing on the mathematical model, Energy Procedia, Vol. 159, 231-236.
  6. 6. Dzido A., Krawczyk P., Kurkus-Gruszecka M. (2019), Numerical Analysis of Dry Ice Blasting Convergent-Divergent Supersonic Nozzle, Energies, Vol. 12, 4787.
  7. 7. Dzido A., Krawczyk., Badyda K., Chondrokostas, (2021), Operational parameters impact on the performance of dry-ice blasting nozzle, Energy, Vol. 214, https://doi.org/10.1016/j.energy.2020.118847.10.1016/j.energy.2020.118847
  8. 8. Górecki J., Malujda I., Talaśka K., et al. (2015) Static compression tests of concentrated crystallized carbon dioxide, Applied Mechanics and Materials, Vol. 816, 490-495.
  9. 9. Górecki J., Malujda I., Talaśka K., et al. (2017), Dry ice compaction in piston extrusion process, Acta mechanica et automatic, Vol. 11, no. 4, 313-316.
  10. 10. Górecki J., Malujda I., Talaśka K., et al. (2017), Influence of the compression length on the ultimate stress in the process of mechanical agglomeration of dry ice, Procedia Engineering, vol. 177, 363-368.
  11. 11. Górecki J., Malujda I., Wilczyński D. (2019), The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice, Matec Web of Conferences, Vol.254, 05001.
  12. 12. Górecki J., Malujda I., Wilczyński D., Wojtkiak D. (2019), Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration, Matec Web of Conferences, Vol.254, 2019, 06001.
  13. 13. Górecki J., (2020), Preliminary analysis of the sensitivity of the algebraic dry ice agglomeration model using multi-channel dies to change their geometrical parameters, IOP Conference Series: Materials Science and Engineering, 776, 012030.10.1088/1757-899X/776/1/012030
  14. 14. Górecki J., Fierek A., Talaśka K., et al., (2020), The influence of the limit stress value on the sublimation rate during the dry ice densification process, IOP Conference Series: Materials Science and Engineering, 776, 012072.10.1088/1757-899X/776/1/012072
  15. 15. Górecki J., Talaśka K., Wałęsa K., et al., (2020), Mathematical Model Describing the Influence of Geometrical Parameters of Multichannel Dies on the Limit Force of Dry Ice Extrusion Process, Materials, vol. 13(15), 3317-1 – 3317-11.10.3390/ma13153317
  16. 16. Ishiguro M., Dan K., Kaneko S., et al. (2020) Snow Consolidation Properties by using Mechanical Press Machine, Journal of the Institute of Industrial Applications Engineers, Vol. 7(3), 83-90.
  17. 17. Kukla M, Górecki J, Malujda I, et al. (2017) The determination of mechanical properties of magnetorheological elastomers (MREs) Procedia Engineering, vol. 177 324-330.
  18. 18. Li M., Liu W., Qing X., et al. (2016), Feasibility study of a new approach to removal of paint coatings in remanufacturing, Journal of Materials Processing Technology, Vol. 234, 102-112.
  19. 19. Liu Y., Calvert G., Hare C., et al. (2012), Size measurement of dry ice particles produced from liquid carbon dioxide, Journal of Aerosol Science, Vol. 48, 1-9.
  20. 20. Liu Y., Hirama D., Matusaka S. (2017), Particle removal process during application of impinging dry ice jet, Powder Technology, 607-613.10.1016/j.powtec.2011.11.032
  21. 21. Liu Y., Maruyama H., Matsusaka S. (2010), Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide, Advanced Powder Technology, Vol. 21, 652-657.
  22. 22. Malujda I., Wilczyński D., (2016) Mechanical Properties Investigation of Natural Polymers, Procedia Engineering vol. 136, 263-268.
  23. 23. Masa V., Kuba P., Perilak D., Lokaj J., (2014), Decrease in Consumption of Compressed Air in Dry Ice Blasting Machine, Chemical Engineering Transactions, 39, 805-810, https://doi.org/10.3303/CET1439135.
  24. 24. Masa V., Kuba P. (2016), Efficient use of compressed air for dry ice blasting, Journal of Cleaner Production, Vol. 111, 76-84.
  25. 25. Mazzoldi A., Hill T., Colls J. (2008), CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank, International Journal of Greenhouse Gas Control, Vol. 2, 210-218.
  26. 26. Mikołajczak A., Krawczyk P., Stępień M., et al. (2018), Preliminary specification of the dry ice blasting converging-divergent nozzle parameters basing on the standard (analytical) methods, Rynek Energii, Vol. 4, 91-96.
  27. 27. Muckenhaupt D., Zutzmann T., Rudek A., Russ G., (2019), An Experimental and Numerical Procedure for Energetic and Acoustic Optimization of Dry-ice Blasting Processes, Chemical Engineering Transactions, Vol. 74, 967-972, https://doi.org/10.3303/CET1974162
  28. 28. Otto C., Zahn S., Rost F., et al. (2011), Physical Methods of cleaning And Disinfection of Surfaces, Food Engineering Review, Vol. 3, 171-188.
  29. 29. Talaśka K., (2017), Analysis of the energy efficiency of the shredded wood material densification process Procedia Engineering 177 352-357.10.1016/j.proeng.2017.02.205
  30. 30. Spur G., Uhlmann E., Elbing F. (1999), Dry-ice blasting for cleaning: process, optimization and application, Wear, Vol. 233–235, 402–411.10.1016/S0043-1648(99)00204-5
  31. 31. Uhlmann E., Kretzschmar M., Elbing F., et al. (2010), Deburring with CO2 Snow Blasting. In: J. Aurich, D. Dornfeld (eds) Burrs - Analysis, Control and Removal. Springer, Berlin, Heidelberg.10.1007/978-3-642-00568-8_19
  32. 32. Wałęsa K., Malujda I., Talaśka K. (2018), Butt welding of round drive belts, Acta Mechanica et Automatica, Vol. 12, no. 2, s. 115-126
  33. 33. Wałęsa K., Malujda M., Górecki J., et al. (2019), The temperature distribution during heating in hot plate welding process, MATEC Web of Conferences, Vol. 254, 0233-1 - 02033-11.
  34. 34. Wałęsa K., Malujda I., Wilczyński D. (2019), Shaping the parameters of cylindrical belt surface in the joint area, Acta Mechanica et Automatica, vol. 13, 255-261.
  35. 35. Wałęsa K., Malujda I., Wilczyński D. (2020), Experimental research of the thermoplastic belt plasticizing process in the hot plate welding, IOP Conference Series: Materials Science and Engineering, 776, 012011.10.1088/1757-899X/776/1/012011
  36. 36. Wałęsa K., Malujda I., Górecki J. (2020), Experimental research of the mechanical properties of the round drive belts made of thermoplastic elastomer, IOP Conference Series: Materials Science and Engineering, 776, 012107.10.1088/1757-899X/776/1/012107
  37. 37. Wilczyński D., Talaśka K., Malujda I., et al. (2018) Experimental research on biomass cutting process MATEC Web of Conferences vol. 157 07016.
  38. 38. Wilczyński D, Berdychowski M, Wojtkowiak D, et al. (2019) Experimental and numerical tests of the compaction process of loose material in the form of sawdust, MATEC Web of Conferences, vol. 254 02042.
  39. 39. Wilczyński D., Malujda I., Górecki J. et al. (2019) Experimental research on the process of cutting transport belts, MATEC Web of Conferences, vol. 254 05014.
  40. 40. Wilczyński D., Malujda I., Górecki J., et al., (2019) Research on the process of biomass compaction in the form of straw, MATEC Web of Conferences, vol. 254 05015.
  41. 41. Wilczyński D., Wałęsa K., Berdychowski M., et al., (2020) Biomass cutting tests to determine the lowest value of the process force, IOP Conf. Series: Materials Science and Engineering vol. 776 012014.
  42. 42. Witte A., Bobal M., David R., et al. (2017), Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment, LWT - Food Science and Technology, Vol. 75, 735-741.
  43. 43. Wojtkowiak D., Talaśka K., Malujda I., et al. (2018), Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch. The International Journal of Advanced Manufacturing Technology https://doi.org/10.1007/s00170-018-2381-3.10.1007/s00170-018-2381-3
  44. 44. Wojtkowiak D. and Talaśka K. (2019) Determination of the effective geometrical features of the piercing punch for polymer composite belts The International Journal of Advanced Manufacturing Technology, vol. 104, 315-332.
  45. 45. Wojtkowiak D., Talaśka K., Wilczyński D., et al. (2021), Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies, Vol. 14, No. 1, http://dx.doi.org/10.3390/en14020317.10.3390/en14020317
DOI: https://doi.org/10.2478/ama-2021-0015 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 107 - 112
Submitted on: Jun 8, 2020
Accepted on: Jun 15, 2021
Published on: Sep 27, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Jan Górecki, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.