Have a personal or library account? Click to login
Near-Resonant Regimes of a Moving Load on a Pre-Stressed Incompressible Elastic Half-Space Cover

Near-Resonant Regimes of a Moving Load on a Pre-Stressed Incompressible Elastic Half-Space

Open Access
|May 2021

References

  1. 1. Alekseeva L.A., Ukrainets V.N. (2009), Dynamics of an elastic half-space with a reinforced cylindrical cavity under moving loads, Int. Appl. Mech., 45(9), 981-990.10.1007/s10778-010-0238-z
  2. 2. Bratov V. (2011), Incubation time fracture criterion for FEM simulations, Acta Mech. Sin., 27(4), 541.10.1007/s10409-011-0484-2
  3. 3. Cao Y., Xia H., Li Z. (2012), A semi-analytical/FEM model for predicting ground vibrations induced by high-speed train through continuous girder bridge, J. Mech. Sci. Technol., 26, 2485-2496.10.1007/s12206-012-0630-1
  4. 4. Cole J., Huth J. (1958), Stresses produced in a half plane by moving loads, J. Appl. Mech., 25, 433-436.10.1115/1.4011853
  5. 5. de Hoop A.T. (2002), The moving-load problem in soil dynamics – the vertical displacement approximation, Wave Motion, 36(4), 335-346.10.1016/S0165-2125(02)00028-8
  6. 6. Dimitrovová Z. (2017), Analysis of the critical velocity of a load moving on a beam supported by a finite depth foundation, Int. J. Solids Struct., 122, 128-14710.1016/j.ijsolstr.2017.06.009
  7. 7. Dowaikh M.A., Ogden R.W. (1990), On surface waves and deformations in a pre-stressed incompressible elastic solid, IMA J. Appl. Math., 44, 261-284.10.1093/imamat/44.3.261
  8. 8. Ege N., Erbaş B., Kaplunov J., Wootton P. (2018), Approximate analysis of surface wave-structure interaction, J. Mech. Mater. Struct., 13(3), 297-309.10.2140/jomms.2018.13.297
  9. 9. Ege N., Şahin O., Erbaş B. (2017), Response of a 3D elastic half-space to a distributed moving load, Hacet J. Math. Stat., 46(5), 817-828.10.15672/HJMS.2017.434
  10. 10. Erbaş B., Kaplunov J., Nolde E., Palsü M. (2018), Composite wave models for elastic plates, P. Roy. Soc. A-Math. Phy., 474(2214), 1-16.10.1098/rspa.2018.0103
  11. 11. Erbaş B., Kaplunov J., Palsü M. (2019), A composite hyperbolic equation for plate extension, Mech. Res. Commun., 99, 64-67.10.1016/j.mechrescom.2019.06.008
  12. 12. Erbaş B., Kaplunov J., Prikazchikov D.A., Şahin O. (2017), The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space, Math. Mech. Solids, 22(1), 89–100.10.1177/1081286514555451
  13. 13. Fryba L. (1999), Vibration of solids and structures under moving loads, 3rd ed, Thomas Telford, London.10.1680/vosasuml.35393
  14. 14. Fu Y., Kaplunov J., Prikazchikov D. (2020), Reduced model for the surface dynamics of a generally anisotropic elastic half-space, P. Roy. Soc. A-Math. Phy., 476(2234), 1-19.10.1098/rspa.2019.0590
  15. 15. Gakenheimer D.C., Miklowitz J. (1969), Transient excitation of an elastic half space by a point load traveling on the surface, J. Appl. Mech., 36(3), 505-515.10.1115/1.3564708
  16. 16. Gent A.N. (1996), A new constitutive relation for rubber, Rubber Chem. Technol., 69(1), 59-61.10.5254/1.3538357
  17. 17. Goldstein R.V. (1965), Rayleigh waves and resonance phenomena in elastic bodies, J. Appl. Math. Mech. (PMM), 29(3), 516-525.10.1016/0021-8928(65)90066-3
  18. 18. Gourgiotis P.A., Piccolroaz A. (2014), Steady-state propagation of a mode II crack in couple stress elasticity, Int. J. Fract., 188(2), 119-145.10.1007/s10704-014-9950-8
  19. 19. Kaplunov J., Nolde E., Prikazchikov D.A. (2010a), A revisit to the moving load problem using an asymptotic model for the Rayleigh wave, Wave Motion, 47, 440-451.10.1016/j.wavemoti.2010.01.005
  20. 20. Kaplunov J., Prikazchikov D., Sultanova L. (2019), Rayleigh-type waves on a coated elastic half-space with a clamped surface, Phil. Trans. Roy. Soc. A, 377(2156), 1-15.10.1098/rsta.2019.0111
  21. 21. Kaplunov J., Prikazchikov D.A. (2017), Asymptotic theory for Rayleigh and Rayleigh-type waves, Adv. Appl. Mech., 50, 1-106.10.1016/bs.aams.2017.01.001
  22. 22. Kaplunov J., Prikazchikov D.A., Erbaş B., Şahin O. (2013), On a 3D moving load problem for an elastic half space, Wave Motion, 50(8), 1229-1238.10.1016/j.wavemoti.2012.12.008
  23. 23. Kaplunov J., Voloshin V., Rawlins A.D. (2010b), Uniform asymptotic behaviour of integrals of Bessel functions with a large parameter in the argument, Quart. J. Mech. Appl. Math., 63(1), 57-72.10.1093/qjmam/hbp024
  24. 24. Khajiyeva L.A., Prikazchikov D.A., Prikazchikova L.A. (2018), Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space, Mech. Res. Commun., 92, 49-53.10.1016/j.mechrescom.2018.07.006
  25. 25. Krylov V.V. (1996), Vibrational impact of high-speed trains. I. Effect of track dynamics, J. Acoust. Soc. Am., 100(5), 3121-3134.10.1121/1.417123
  26. 26. Kumar R., Vohra R. (2020), Steady state response due to moving load in thermoelastic material with double porosity, Mater. Phys. Mech., 44(2), 172-185.
  27. 27. Lefeuve-Mesgouez G., Le Houédec D., Peplow A.T. (2000), Ground vibration in the vicinity of a high-speed moving harmonic strip load, J. Sound Vib., 231(5), 1289-1309.10.1006/jsvi.1999.2731
  28. 28. Lu T., Metrikine A.V., Steenbergen M.J.M.M. (2020), The equivalent dynamic stiffness of a visco-elastic half-space in interaction with a periodically supported beam under a moving load, Europ. J. Mech.-A/Solids, 84, 104065.10.1016/j.euromechsol.2020.104065
  29. 29. Mishuris G., Piccolroaz A., Radi E. (2012), Steady-state propagation of a Mode III crack in couple stress elastic materials, Int. J. Eng. Sci., 61, 112-128.10.1016/j.ijengsci.2012.06.015
  30. 30. Ogden R.W. (1984), Non-linear elastic deformations, Dover, New York.10.1016/0264-682X(84)90061-3
  31. 31. Payton R.G. (1967), Transient motion of an elastic half-space due to a moving surface line load, Int. J. Eng. Sci., 5(1), 49-79.10.1016/0020-7225(67)90054-7
  32. 32. Pucci E., Saccomandi G. (2002), A note on the Gent model for rubber-like materials, Rubber Chem. Technol., 75(5), 839-852.10.5254/1.3547687
  33. 33. Smirnov V., Petrov Yu.V., Bratov V. (2012), Incubation time approach in rock fracture dynamics, Sci. China Phys., Mech. Astr., 55(1), 78-85.10.1007/s11433-011-4579-3
  34. 34. Sun Z., Kasbergen C., Skarpas A., Anupam K., van Dalen K.N., Erkens S.M. (2019), Dynamic analysis of layered systems under a moving harmonic rectangular load based on the spectral element method, Int. J. Solids Struct., 180, 45-61.10.1016/j.ijsolstr.2019.06.022
  35. 35. van Dalen K.N., Tsouvalas A., Metrikine A.V., Hoving J.S. (2015), Transition radiation excited by a surface load that moves over the interface of two elastic layers, Int. J. Solids Struct., 73, 99-112.10.1016/j.ijsolstr.2015.07.001
  36. 36. Wang F., Han X., Ding T. (2021), An anisotropic layered poroelastic half-space subjected to a moving point load, Soil Dyn. Earth. Eng., 140, 106427.10.1016/j.soildyn.2020.106427
  37. 37. Wang Y., Zhou A., Fu T., Zhang W. (2020), Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass, Int. J. Mech. Mater. Design, 16(3), 519-540.10.1007/s10999-019-09483-9
  38. 38. Wootton P.T., Kaplunov J., Colquitt D.J. (2019), An asymptotic hyperbolic-elliptic model for flexural-seismic metasurfaces, P. Roy. Soc. A-Math. Phy., 475(2227), 1-18.10.1098/rspa.2019.0079
  39. 39. Wootton P.T., Kaplunov J., Prikazchikov D. (2020), A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane, IMA J. Appl. Math., 85, 113-131.10.1093/imamat/hxz037
  40. 40. Zhou L., Wang S., Li L., Fu Y. (2018), An evaluation of the Gent and Gent-Gent material models using inflation of a plane membrane, Int. J. Mech. Sci., 146-147, 39-48.10.1016/j.ijmecsci.2018.07.035
DOI: https://doi.org/10.2478/ama-2021-0005 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 30 - 36
Submitted on: Oct 15, 2020
Accepted on: Apr 19, 2021
Published on: May 15, 2021
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Askar Kudaibergenov, Askat Kudaibergenov, Danila Prikazchikov, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.