References
- 1. Araya R., Marivil M., Mir C., Moroni O., Sepúlveda A. (2008), Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading, Materials Science and Engineering: A, 496(1-2), 209–213.10.1016/j.msea.2008.05.030
- 2. ASTM F2516-14 (2014), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.
- 3. Auricchio F., Marfia S., Sacco E. (2003) Modelling of SMA materials: training and two way memory effect, Comput. Struct. 81, 2301–2317.10.1016/S0045-7949(03)00319-5
- 4. Bubulinca C., Balandraud X., Grédiac M., Stanciu S., Abrudeanu M. (2014), Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science, 49, 701–709.10.1007/s10853-013-7751-5
- 5. Carpinteri A., Di Cocco, Fortese G., Iacoviello F., Natali S., Ronchei C., Scorza D., Vantadori S., Zanichelli A. (2018), mechanical behaviour and phase transition mechanisms of a shape memory alloy by means of a novel analytical model, Acta Mechanica et Automatica, Vol. 12, No. 2, 105–108.
- 6. Duerig T., Stoeckel J., Johnson D. (2002) SMA — smart materials for medical applications, Proceedings of SPIE 4763, Bellingham, WA, 7–15.10.1117/12.508666
- 7. Hua P., Chu K., Ren F., Sun Q. (2020), Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Materialia, 185, 507–517.10.1016/j.actamat.2019.12.019
- 8. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory, Materials Science, 54(3), 406–411.10.1007/s11003-018-0199-7
- 9. Iasnii V., Yasniy P. (2019a), Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study, Acta mechanica et automatica, 13(2), 95–100.10.2478/ama-2019-0013
- 10. Iasnii V., Yasniy P., Lapusta Y., Shnitsar T. (2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7–12.10.33108/visnyk_tntu2018.04.007
- 11. Iasnii, V., Yasniy P. (2019b), Influence of stress ratio on functional fatigue of pseudoelastic NiTi alloy, Procedia Structural Integrity, 16, 67–72.10.1016/j.prostr.2019.07.023
- 12. Kang G. (2013), Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mechanica Solida Sinica, 26(3), 221–236.10.1016/S0894-9166(13)60021-X
- 13. Kecik K. (2015), Application of shape memory alloy in harvesto-absorber system, Acta mechanica et automatica, 9(3), 155–160.10.1515/ama-2015-0026
- 14. Mahtabi M.J., Shamsaei N., Rutherford B. (2015), Mean strain effects on the fatigue behavior of superelastic Nitinol alloys: An experimental investigation, Procedia Engineering, 133, 646–654.10.1016/j.proeng.2015.12.645
- 15. Mahtabi M.J., Stone T.W., Shamsaei N. (2018), Load sequence effects and variable amplitude fatigue of superelastic NiTi, International Journal of Mechanical Sciences, 148, 307–315.10.1016/j.ijmecsci.2018.08.037
- 16. Maletta C., Sgambitterra E., Furgiuele F., Casati R., Tuissi R. (2014), Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, 66, 78–85.10.1016/j.ijfatigue.2014.03.011
- 17. Nematollahi M., Baghbaderani K.S., Amerinatanzi A., Zamanian H., Elahinia M. (2019), Application of NiTi in Assistive and Rehabilitation Devices: A Review, Bioengineering, 6(2), 37.10.3390/bioengineering6020037663052431035696
- 18. Pecora R., Dimino I. (2015), SMA for Aeronautics, Shape Memory Alloy Engineering, Chapter 10, 275–304.10.1016/B978-0-08-099920-3.00010-3
- 19. Pelton, A.R., Schroeder V., Mitchell M.R., Gong Xiao-Yan, Barney M., Robertson S.W. (2008), Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, 1 (2), 153–164.10.1016/j.jmbbm.2007.08.00119627780
- 20. Scirè Mammano G., Dragoni E. (2012), Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints, Frattura ed Integrità Strutturale, 7(23), 25–33.10.3221/IGF-ESIS.23.03
- 21. Soul H., Yawny A. (2015), Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires, Smart Materials and Structures, 24(7), 075005.10.1088/0964-1726/24/7/075005
- 22. Soul H., Yawny A. (2017), Effect of Variable Amplitude Blocks’ Ordering on the Functional Fatigue of Superelastic NiTi Wires, Shap. Mem. Superelasticity, 3, 431–442.10.1007/s40830-017-0126-z
- 23. Wagner M.F., Nayan N., Ramamurty U. (2008), Healing of fatigue damage in NiTi shape memory alloys, Journal of Physics D: Applied Physics, 41(18), 185408.10.1088/0022-3727/41/18/185408
- 24. Yasniy P., Hlado V., Hutsaylyuk V., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391–397.10.1111/j.1460-2695.2005.00870.x
- 25. Zeng Z., Oliveira J.P., Ao S. Et al. (2020), Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy, Optics & Laser Technology, 122.10.1016/j.optlastec.2019.105876