Have a personal or library account? Click to login
Functional Behavior of Pseudoelastic NiTi Alloy Under Variable Amplitude Loading Cover

Functional Behavior of Pseudoelastic NiTi Alloy Under Variable Amplitude Loading

Open Access
|Nov 2020

References

  1. 1. Araya R., Marivil M., Mir C., Moroni O., Sepúlveda A. (2008), Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading, Materials Science and Engineering: A, 496(1-2), 209–213.10.1016/j.msea.2008.05.030
  2. 2. ASTM F2516-14 (2014), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.
  3. 3. Auricchio F., Marfia S., Sacco E. (2003) Modelling of SMA materials: training and two way memory effect, Comput. Struct. 81, 2301–2317.10.1016/S0045-7949(03)00319-5
  4. 4. Bubulinca C., Balandraud X., Grédiac M., Stanciu S., Abrudeanu M. (2014), Characterization of the mechanical dissipation in shape-memory alloys during stress-induced phase transformation, Journal of Materials Science, 49, 701–709.10.1007/s10853-013-7751-5
  5. 5. Carpinteri A., Di Cocco, Fortese G., Iacoviello F., Natali S., Ronchei C., Scorza D., Vantadori S., Zanichelli A. (2018), mechanical behaviour and phase transition mechanisms of a shape memory alloy by means of a novel analytical model, Acta Mechanica et Automatica, Vol. 12, No. 2, 105–108.
  6. 6. Duerig T., Stoeckel J., Johnson D. (2002) SMA — smart materials for medical applications, Proceedings of SPIE 4763, Bellingham, WA, 7–15.10.1117/12.508666
  7. 7. Hua P., Chu K., Ren F., Sun Q. (2020), Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Materialia, 185, 507–517.10.1016/j.actamat.2019.12.019
  8. 8. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory, Materials Science, 54(3), 406–411.10.1007/s11003-018-0199-7
  9. 9. Iasnii V., Yasniy P. (2019a), Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study, Acta mechanica et automatica, 13(2), 95–100.10.2478/ama-2019-0013
  10. 10. Iasnii V., Yasniy P., Lapusta Y., Shnitsar T. (2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7–12.10.33108/visnyk_tntu2018.04.007
  11. 11. Iasnii, V., Yasniy P. (2019b), Influence of stress ratio on functional fatigue of pseudoelastic NiTi alloy, Procedia Structural Integrity, 16, 67–72.10.1016/j.prostr.2019.07.023
  12. 12. Kang G. (2013), Advances in transformation ratcheting and ratcheting-fatigue interaction of NiTi shape memory alloy, Acta Mechanica Solida Sinica, 26(3), 221–236.10.1016/S0894-9166(13)60021-X
  13. 13. Kecik K. (2015), Application of shape memory alloy in harvesto-absorber system, Acta mechanica et automatica, 9(3), 155–160.10.1515/ama-2015-0026
  14. 14. Mahtabi M.J., Shamsaei N., Rutherford B. (2015), Mean strain effects on the fatigue behavior of superelastic Nitinol alloys: An experimental investigation, Procedia Engineering, 133, 646–654.10.1016/j.proeng.2015.12.645
  15. 15. Mahtabi M.J., Stone T.W., Shamsaei N. (2018), Load sequence effects and variable amplitude fatigue of superelastic NiTi, International Journal of Mechanical Sciences, 148, 307–315.10.1016/j.ijmecsci.2018.08.037
  16. 16. Maletta C., Sgambitterra E., Furgiuele F., Casati R., Tuissi R. (2014), Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, 66, 78–85.10.1016/j.ijfatigue.2014.03.011
  17. 17. Nematollahi M., Baghbaderani K.S., Amerinatanzi A., Zamanian H., Elahinia M. (2019), Application of NiTi in Assistive and Rehabilitation Devices: A Review, Bioengineering, 6(2), 37.10.3390/bioengineering6020037663052431035696
  18. 18. Pecora R., Dimino I. (2015), SMA for Aeronautics, Shape Memory Alloy Engineering, Chapter 10, 275–304.10.1016/B978-0-08-099920-3.00010-3
  19. 19. Pelton, A.R., Schroeder V., Mitchell M.R., Gong Xiao-Yan, Barney M., Robertson S.W. (2008), Fatigue and durability of Nitinol stents, Journal of the Mechanical Behavior of Biomedical Materials, 1 (2), 153–164.10.1016/j.jmbbm.2007.08.00119627780
  20. 20. Scirè Mammano G., Dragoni E. (2012), Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints, Frattura ed Integrità Strutturale, 7(23), 25–33.10.3221/IGF-ESIS.23.03
  21. 21. Soul H., Yawny A. (2015), Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires, Smart Materials and Structures, 24(7), 075005.10.1088/0964-1726/24/7/075005
  22. 22. Soul H., Yawny A. (2017), Effect of Variable Amplitude Blocks’ Ordering on the Functional Fatigue of Superelastic NiTi Wires, Shap. Mem. Superelasticity, 3, 431–442.10.1007/s40830-017-0126-z
  23. 23. Wagner M.F., Nayan N., Ramamurty U. (2008), Healing of fatigue damage in NiTi shape memory alloys, Journal of Physics D: Applied Physics, 41(18), 185408.10.1088/0022-3727/41/18/185408
  24. 24. Yasniy P., Hlado V., Hutsaylyuk V., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391–397.10.1111/j.1460-2695.2005.00870.x
  25. 25. Zeng Z., Oliveira J.P., Ao S. Et al. (2020), Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy, Optics & Laser Technology, 122.10.1016/j.optlastec.2019.105876
DOI: https://doi.org/10.2478/ama-2020-0022 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 154 - 160
Submitted on: Mar 24, 2020
Accepted on: Nov 13, 2020
Published on: Nov 20, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Volodymyr Iasnii, Petro Yasniy, Yuri Lapusta, Oleg Yasniy, Oleksandr Dyvdyk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.