Have a personal or library account? Click to login
Parametric Study on the Spring-Back Effect in AA5052 Alloy in the Course of Three-Point Roll Bending Process Cover

Parametric Study on the Spring-Back Effect in AA5052 Alloy in the Course of Three-Point Roll Bending Process

Open Access
|Nov 2020

References

  1. 1. Abvabi A., Mendiguren J., Rolfe B.F., Weiss M. (2014), Springback Investigation in Roll Forming of a V-Section, Applied mechanics and materials, 553, 643–648.10.4028/www.scientific.net/AMM.553.643
  2. 2. Ameen H.A. (2012), Effect of Sheet Thickness and Type of Alloys on the Springback Phenomenon for Cylindrical Die, American journal of scientific and industrial research, 480.
  3. 3. Badr O.M., Rolfe B., Zhang P., Weiss M. (2017), Applying a new constitutive model to analyse the springbackbehaviour of titanium in bending and roll forming, International Journal of Mechanical Sciences, 128, 389–400,10.1016/j.ijmecsci.2017.05.025
  4. 4. Belykh S., Krivenok A., Bormotin K., Stankevich A., Krupskiy R., Mishagin V., Burenin A. (2016), Numerical and Experimental Study of Multi-Point Forming of Thick Double-Curvature Plates from Aluminum Alloy 7075, KnE Materials Science, vol (NA), 17–23.10.18502/kms.v1i1.556
  5. 5. Davies R., Magee C. (1977), The effect of strain rate upon the bending behavior of materials, ASME, New York.10.1115/1.3443405
  6. 6. Fortin P., Bull M., Moore D. (1983), An optimized aluminum alloy (x6111) for auto body sheet applications, SAE Technical Paper.10.4271/830096
  7. 7. Gandhi A., Raval H., (2006), Article Title, ASME 2006 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 107–116.
  8. 8. Ghimire S., Emeerith Y., Ghosh R., Ghosh S., Barman R.N. (2017), Finite Element Analysis of an Aluminium Alloy Sheet in a VDie Punch Mechanism Considering Spring-Back Effect, International Journal of Theoretical and Applied Mechanics, 12, 331–342.
  9. 9. Guo X., Gu Y., Wang H., Jin K., Tao J. (2018), The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incremental forming process, The International Journal of Advanced Manufacturing Technology, 94, 1387–1396.10.1007/s00170-017-0965-y
  10. 10. Hansen N., Jannerup O. (1979), Modelling of elastic-plastic bending of beams using a roller bending machine, ASME, New York10.1115/1.3439511
  11. 11. Hardt D., Roberts M., Stelson K.A. (1982), Closed-loop shape control of a roll-bending process, ASME, New York10.1115/1.3139715
  12. 12. Hecker S. (1975), Formability of aluminum alloy sheets, ASME, New York10.1115/1.3443263
  13. 13. Hill R. (1958), A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6, 236–249.10.1016/0022-5096(58)90029-2
  14. 14. Hu J., Marciniak Z., Duncan J. (2002), Mechanics of sheet metal forming, Elsevier, Oxford.
  15. 15. HyperWorks (2010), HyperMesh, Version 11.
  16. 16. HyperWorks (2014), Hyperworks 14.0 RADIOSS reference guide, Altair engineering.
  17. 17. Khamneh M.E., Askari-Paykani M., ShahverdiH,.,Hadavi S.M.M., Emami M. (2016), Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using D-optimal design of experiment method, Measurement 88, 278–286,10.1016/j.measurement.2016.03.003
  18. 18. Ktari A., Antar Z., Haddar N., Elleuch K. (2012), Modeling and computation of the three-roller bending process of steel sheets, Journal of mechanical science and technology, 26, 123–128.10.1007/s12206-011-0936-4
  19. 19. Kumar K.D., Appukuttan K., Neelakantha V., Naik P.S. (2014), Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation, Materials & Design, 56, 613–619.10.1016/j.matdes.2013.11.047
  20. 20. Lee M.-G., Kim D., Kim C., Wenner M.L., Chung K. (2005), Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications, International journal of plasticity, 21, 915–953.10.1016/j.ijplas.2004.05.014
  21. 21. Liu Y., Wang L., Zhu B., Wang Y., Zhang Y. (2018), Identification of two aluminum alloys and springback behaviors in cold bending, Procedia Manufacturing, 15, 701–708.10.1016/j.promfg.2018.07.303
  22. 22. Parsa M., Pishbin H., Kazemi M. (2012), Investigating spring back phenomena in double curved sheet metals forming, Materials & Design, 41, 326–337.10.1016/j.matdes.2012.05.009
  23. 23. Paulsen F., Welo T. (1996), Application of numerical simulation in the bending of aluminium-alloy profiles, Journal of Materials Processing Technology, 58, 274–285.10.1016/0924-0136(95)02152-3
  24. 24. Ramalingam V.V., Ramasamy P. (2017), Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using polynomial: radial basis function, Transactions of the Indian Institute of Metals, 70, 2575–2589.10.1007/s12666-017-1110-1
  25. 25. Srivastav Y., Shinde S. (2010), Dynamic Simulation and Analysis of Plate Roll Bending Process for Forming a Cylindrical Shell, Proceedings of the HyperWorks Technology Conference 2010, Altair Technology Conference.
  26. 26. Vignesh R.V., Padmanaban R., Datta M. (2018), Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy, Tribology-Materials, Surfaces & Interfaces, 12(3), 157–169.10.1080/17515831.2018.1483295
  27. 27. VigneshV., Padmanaban R. (2018), Modelling of peak temperature during friction stir processing of magnesium alloy AZ91, IOP Conference Series: Materials Science and Engineering, 310(1), 012019.10.1088/1757-899X/310/1/012019
  28. 28. Westermann I., Snilsberg K.E., Sharifi Z., Hopperstad O.S., Marthinsen K., Holmedal B. (2011), Three-point bending of heat-treatable aluminum alloys: influence of microstructure and texture on bendability and fracture behavior, Metallurgical and Materials Transactions, A 42, 3386–3398.10.1007/s11661-011-0768-y
  29. 29. Xing M.-Z., Wang Y.-G., Jiang Z.-X. (2013), Dynamic fracture behaviors of selected aluminum alloys under three-point bending, De-fence Technology, 9, 193–200.10.1016/j.dt.2013.11.002
  30. 30. Xu W., Ma C., Li C., Feng W. (2004), Sensitive factors in springback simulation for sheet metal forming, Journal of Materials Processing Technology, 151, 217–222, (2004).10.1016/j.jmatprotec.2004.04.044
  31. 31. Yang M., Shima S. (1988), Simulation of pyramid type three-roll bending process, International Journal of Mechanical Sciences, 30, 877–886.10.1016/0020-7403(88)90071-9
DOI: https://doi.org/10.2478/ama-2020-0019 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 128 - 134
Submitted on: Dec 25, 2019
Accepted on: Oct 16, 2020
Published on: Nov 20, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Viswanathan Shrinaath, Ramalingam Vairavignesh, Ramasamy Padmanaban, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.