Have a personal or library account? Click to login
Stress Assessment of Gear Teeth in Epicyclic Gear Train for Radial Sedimentation Tank Cover

Stress Assessment of Gear Teeth in Epicyclic Gear Train for Radial Sedimentation Tank

Open Access
|Nov 2020

References

  1. 1. ANSI/AGMA 6123-C16 (2016), Design Manual for Enclosed Epicyclic Gear Drives.
  2. 2. Batsch M., Markowski T., Zubrzycki M. (2017), Mathematical model of internal pin gear mesh (in Polish), STAL Metale Nowe technologie. Koła zębate - projektowanie, wytwarzanie, pomiary, eksploatacja, 13–16.
  3. 3. Budzik G., Kozik B., Pacana J. (2013), Defining influence of load conditions on distribution and value of stresses in dual-power-path gear wheels applying FEM, Aircraft Engineering and Aerospace Technology, Vol. 85, No. 6, 453–459.
  4. 4. Budzik G., Pacana J. (2008), Analysis of the correctness of the FEM solution depending on the type and number of finite elements used (in Polish), Acta Mechanica Slovaca, 3-A/2008, t. 12, Technical University of Kosice, 327–332.
  5. 5. Cooley C.G., Parker R.G. (2014) A review of planetary and epicyclic gear dynamics and vibrations research, Applied Mechanics Reviews, Vol. 66, No. 4, Article Number 040804
  6. 6. Dadley D.W. (2002), Handbook of Practical Gear Design, CRC Press LLC.
  7. 7. Fernandez del Rincon A., Viadero F., Iglesias M., García P., de-Juan A., Sancibrian R. (2013) A model for the study of meshing stiffness in spur gear transmissions, Mechanism and Machine Theory, Vol. 61, 30–58, doi.org/10.1016/j.mechmachtheory.2012.10.008
  8. 8. Iglesias M., Fernandez del Rincon A., de-Juan A., Garcia P., Diez-Ibarbia A., Viadero F. (2017) Planetary transmission load sharing: Manufacturing errors and system configuration study, Mechanism and Machine Theory, Vol. 111, 21–38, https://doi.org/10.1016/j.mechmachtheory.2016.12.010.10.1016/j.mechmachtheory.2016.12.010
  9. 9. ISO 6336-1 (2006), Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors.
  10. 10. ISO 6336-2 (2006), Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface durability (pitting).
  11. 11. ISO 6336-3 (2006), Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending strength.
  12. 12. Kopecki H., Witek L. (2000), Influence of the type and number of elements on the error and convergence of the FEM solution on the example of the stability analysis of a compressed member (in Polish). V Konferencja Naukowo-Techniczna, Military University of Technology, (WAT), IPPT PAN, Warsaw - Rynia.
  13. 13. Ligata H., Kahraman A., Singh A. (2008), An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing, Journal of Mechanical Design, Transactions of the ASME, Vol. 130, No. 4, 577–595.
  14. 14. Markowski T., Budzik G., Pacana J. (2010), Criteria for selecting a numerical model for the strength calculations of a cylindrical gear with the FEM method (in Polish), Modelowanie Inżynierskie, Vol. 8, No. 39, 135–142.
  15. 15. Marques P.M.T., Martins R.C., Seabra, J.H.O. (2016) Power loss and load distribution models including frictional effects for spur and helical gears, Mechanism and Machine Theory, Vol. 96, Part 1, 1–25, DOI: 10.1016/j.mechmachtheory.2015.09.00510.1016/j.mechmachtheory.2015.09.005
  16. 16. Marques P.M.T., Martins R.C., Seabra, J.H.O. (2017) Analytical load sharing and mesh stiffness model for spur/helical and internal/external gears – Towards constant mesh stiffness gear design, Mechanism and Machine Theory, Vol. 113, 126–140, doi.org/10.1016/j.mechmachtheory.2017.03.007
  17. 17. Parker R.G., Lin J. (2004) Mesh Phasing Relationships in Planetary and Epicyclic Gears, Journal of Mechanical Design, Vol. 126(2), 365–370, https://doi.org/10.1115/1.166789210.1115/1.1667892
  18. 18. Rusiński E., Czmochowski J., Smolnicki T. (2000), Advanced finite element method in load-bearing structures (in Polish), The Wrocław University of Technology Publishing House, Wrocław.
  19. 19. Sánchez M.B., Pleguezuelos M., Pedrero J. I. (2019), Strength model for bending and pitting calculations of internal spur gears, Mechanism and Machine Theory, Vol. 133, 691–705, https://doi.org/10.1016/j.mechmachtheory.2018.12.01610.1016/j.mechmachtheory.2018.12.016
  20. 20. Singh A. (2005), Application of a System Level Model to Study the Planetary Load Sharing Behavior, Journal of Mechanical Design, Vol. 127, 469–476.
  21. 21. Singh A. (2010), Load sharing behavior in epicyclic gears: Physical explanation and generalized formulation, Mechanism and Machine Theory, Vol. 45, 511–530.
  22. 22. Tsai S.-J., Huang G.-L., Ye S.-Y. (2015) Gear meshing analysis of planetary gear sets with a floating sun gear, Mechanism and Machine Theory, Vol. 84, 145–163, https://doi.org/10.1016/j.mechmachtheory.2014.03.00110.1016/j.mechmachtheory.2014.03.001
  23. 23. Tsai S.-J., Ye S.-Y. (2018), A computerized approach for loaded tooth contact analysis of planetary gear drives considering relevant deformations, Mechanism and Machine Theory, Vol. 122, 252–278, https://doi.org/10.1016/j.mechmachtheory.2017.12.02610.1016/j.mechmachtheory.2017.12.026
  24. 24. Wiktor J. (2004), Analytical and numerical methods of analysis of geometric parameters, motion disturbances and strength of cylindrical gears (in Polish), The Rzeszów University of Technology Publishing House, Rzeszów.
DOI: https://doi.org/10.2478/ama-2020-0018 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 121 - 127
Submitted on: Jan 21, 2020
|
Accepted on: Aug 21, 2020
|
Published on: Nov 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Grzegorz Budzik, Tadeusz Markowski, Michał Batsch, Jadwiga Pisula, Jacek Pacana, Bogdan Kozik, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.