Have a personal or library account? Click to login
Fractional Vector-Order h-Realisation of the Impulse Response Function Cover

Fractional Vector-Order h-Realisation of the Impulse Response Function

Open Access
|Jul 2020

References

  1. 1. Ambroziak L., Lewon D., Pawluszewicz E. (2016), The use of fractional order operators in modeling of RC-electrical systems, Control & Cybernetics, 45(3), 275-288
  2. 2. Bartosiewicz Z., Pawluszewicz E. (2006), Realizations of linear control systems on time scales, Control and Cybernetics, 35(4), 769-786.
  3. 3. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M. (2011), Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems, Vol.29(2), 417-437.
  4. 4. Bettayeb M., Djennoune S., Guermah S., Ghanes M. (2008), Structural properties of linear discrete-time fractional order systems, Proc. of the 17th World Congres The Federation of Automatic Control, Seoul, Korea, 15262—15266.
  5. 5. Das S. (2008), Functonal Fractional Calculus for System Identyfication and Controls, Springer.
  6. 6. Ferreira, R.A.C., Torres, D.F.M. (2011) Fractional h–difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics, 5(1), 110-121.10.2298/AADM110131002F
  7. 7. Gantmacher F.R. (1959), The Theory of Matrices, Chelsea Pub. Comp., London.
  8. 8. Kaczorek T. (1998), Vectors and Matrices in Automation and Electrotechnics, WNT Warsaw 1998 (in Polish).
  9. 9. Kaczorek T. (2017), Cayley-Hamilton theorem for fractional linear systems, Theory and Applications of Non-integer Order Systems, LNEE 407, 45-55, Springer.10.1007/978-3-319-45474-0_5
  10. 10. Koszewnik A., Nartowicz t., Pawluszewicz E. (2016), Fractional order controller to control pump in FESTO MPS® PA Compact Workstation, Proc. of the Int.Carpathian Control Conference, 364-367.
  11. 11. Mozyrska D., Girejko E. (2013), Overview of the fractional h–differences operator, in: Almeida A., Castro L., Speck FO. (eds) Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, 229, Birkhäuser, Basel.10.1007/978-3-0348-0516-2_14
  12. 12. Mozyrska D., Girejko E., Wyrwas M. (2013), Comparision of h –difference fractional operatots, Theory and Appication of Non-integer Order systems, LNEE 257, 191-197, Springer.10.1007/978-3-319-00933-9_17
  13. 13. Mozyrska D., Wyrwas M., Pawluszewicz E. (2017), Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation, International Journal of Systems Science, 48(4), 788-79410.1080/00207721.2016.1216197
  14. 14. Mozyrska, D., Wyrwas, M. (2015), The Z-Transform Method and Delta Type Fractional Difference Operators, Discrete Dynamics in Nature and Society, Article ID 852734, 12 pages10.1155/2015/852734
  15. 15. Oprzędkiewicz K., Gawin E. (2016), A non integer order, state space model for one dimensional heat transfer process, Archives of Control Sciences, 26(2), 261-27510.1515/acsc-2016-0015
  16. 16. Pawluszewicz E., Koszewnik A. (2019), Markov parameters of the input-output map for discrete-time fractional order systems, Proc. of the 24th Int.Conf. on Methods and Models in Automation and Robotics MMAR’2019, Miedzyzdroje, Poland10.1109/MMAR.2019.8864668
  17. 17. Podlubny I. (1999), Fractional differential systems, Academic Press, San Diego
  18. 18. Sierociuk D., Dzieliński A., Sarwas G., Petras I., Podlubny I., Skovranek T. (2013), Modelling heat transfer in heterogenous media using fractional calculus, Phylosophical Transaction of the Royal Society A-Mathematical, Physical and Engineering Sciences, Soc A 371: 20120146, 10 pages10.1098/rsta.2012.014623547224
  19. 19. Sontag E. (1998), Mathematical Control Theory, Springer – Verlag10.1007/978-1-4612-0577-7
  20. 20. Wu G.Ch., Baleanu D., Zeng S.D., Luo W.H. (2016), Mittag-Leffler function for discrete fractional modelling, Journal of King Saud University - Science, 28, 99—10210.1016/j.jksus.2015.06.004
  21. 21. Wu, D.Baleanu, Zeng S.D., Deng Z.G. (2015), Discrete fractional diffusion equation, Nonlinear Dynamics, 80, 281–28610.1007/s11071-014-1867-2
  22. 22. Zabczyk J. (2008), Mathematical Control Theory, Birkhaüser.10.1007/978-0-8176-4733-9
DOI: https://doi.org/10.2478/ama-2020-0016 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 108 - 113
Submitted on: Mar 12, 2020
Accepted on: Jul 3, 2020
Published on: Jul 24, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ewa Pawłuszewicz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.