References
- 1. Brighenti R. (2014), Smart behaviour of layered plates through the use of auxetic materials, Thin-Walled Structures, 84, 432-442.10.1016/j.tws.2014.07.017
- 2. Carneiro V., Meireles J., Puga H. (2013), Auxetic materials — A review, Materials Science-Poland, 31(4), 561-571.10.2478/s13536-013-0140-6
- 3. Duncan O., Shepherd T., Moroney Ch., Foster L., Venkatraman Pr, Winwood K., Allen T., Alderson A. (2018), Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8, 941, 1-33.10.3390/app8060941
- 4. Evans K. (1991), Auxetic Polymers: A New Range of Materials, Endeavour, 15(4), 170–174.10.1016/0160-9327(91)90123-S
- 5. Grima J., Attard D., Gatt R., Cassar R. (2009), A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form, Advanced Engineering Materials, 11(7), 533-535.10.1002/adem.200800388
- 6. Lakes R. S. (1991), Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua, Journal of Engineering Materials and Technology, 113, 148-155.10.1115/1.2903371
- 7. Lakes R. S. (2016), Physical Meaning of Elastic Constants in Cosserat, Void, and Microstretch Elasticity, Journal of Mechanics of Materials and Structues, 11(3), 217-229.10.2140/jomms.2016.11.217
- 8. Li D., Dong L., Lakes R. (2016), A Unit Cell Structure with Tunable Poisson’s Ratio from Positive to Negative, Materials Letters, 164, 456-459.10.1016/j.matlet.2015.11.037
- 9. Mikulich O., Shvabyuk V., Sulym H. (2017), Dynamic Stress Concentration at the Boundary of an Incision at the Plate under the Action of Weak Shock Waves, Acta Mechanica et Automatica, Vol. 11, No. 3, 217-221.
- 10. Naik S., Dandagwhal R., Wani C., Giri S. (2019), A review on various aspects of auxetic materials. AIP Conference Proceedings, 2105 (1), 10.1063/1.5100689.10.1063/1.5100689
- 11. Novak N., Vesenjak M., Ren Z. (2016), Auxetic Cellular Materials - a Review. Journal of Mechanical Engineering, 62(9), 485-493.10.5545/sv-jme.2016.3656
- 12. Nowacki W. (1974), The Linear Theory of Micropolar Elasticity, Springer, New York.10.1007/978-3-7091-2920-3
- 13. Ren X., Das R., Tran P., Ngo T., Xie Y. (2018), Auxetic Metamaterials and Structures: A Review, Smart Mater. Struct., 27, 1-38.
- 14. Rueger Z., Lakes R.S. (2016), Cosserat elasticity of negative Poisson’s ratio foam: Experiment, Smart Materials and Structures, Vol. 25, 1-8.
- 15. Scarpa F., Alderson A., Ruzzene M., K. (2016), Auxetics in smart systems and structures, Smart Materials and Structures, 25(5), 1-8.10.1088/0964-1726/25/5/050301
- 16. Strek T., Michalski J., Jopek H. (2019) Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core, Physica Status Solidi B, Vol. 256 (1), 1800423, 10.1002/pssb.201800423.
- 17. Sulym H., Mikulich O., Shvabyuk V. (2018), Investigation of the dynamic stress state of foam media in Cosserat elasticity, Mechanics and Mechanical Engineering, Vol. 22, No.3, 739-750.
- 18. Underhill R.S. (2017), Manufacture and characterization of auxetic foams, DRDC-RDDC-2017-R099.
- 19. Zhang X., Ding H., An Li. (2014), Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles, Advances in Mechanical Engineering, 10.1155/2014/679678.