Have a personal or library account? Click to login
Temperature-Dependent Fatigue Characteristics of P91 Steel Cover

Temperature-Dependent Fatigue Characteristics of P91 Steel

Open Access
|Jul 2020

References

  1. 1. Besson J., Cailletaud G., Chaboche S. (2009), Non-linear mechanics of materials, Springer.10.1007/978-90-481-3356-7
  2. 2. Cailletaud G., Depoid C., Massinon D., Nicouleau-Bourles E. (2000), Elastoviscoplasticity with ageing in aluminium alloys, [In:] Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour (Paul Germain’s Anniversary Volume), Solid Mechanics and Its Applications, Kluwer Academic Publishers, 75–86.10.1007/0-306-46946-4_5
  3. 3. Cailletaud G., Saï K. (1995), Study of plastic/viscoplastic models with various inelastic mechanisms, International Journal of Plasticity, 11, 991–1005.10.1016/S0749-6419(95)00040-2
  4. 4. Chaboche J.L. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24(10), 1642-1693.10.1016/j.ijplas.2008.03.009
  5. 5. Dassault. (2016), SIMULIA Abaqus Extended Products, Abaqus 6.14 - AP Isight 5.9. http://www.3ds.com/products/simulia
  6. 6. Duda P. (2015), Solution of an inverse axisymmetric heat conduction problem in complicated geometry. International Journal of Heat and Mass Transfer, 419–428.10.1016/j.ijheatmasstransfer.2014.11.002
  7. 7. Egner H. (2012), On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials, International Journal of Solids and Structures, 49(2), 279–288.10.1016/j.ijsolstr.2011.10.014
  8. 8. Egner H., Egner W. (2014), Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling, International Journal of Plasticity, 57, 77–91.10.1016/j.ijplas.2014.03.002
  9. 9. Egner H., Ryś M. (2017), Total energy equivalence in constitutive modeling of multidissipative materials, International Journal of Damage Mechanics, 26(3),, 417–446.10.1177/1056789516679496
  10. 10. Egner W., Egner H. (2016), Thermo-mechanical coupling in constitutive modeling of dissipative materials, International Journal of Solids and Structures, 91, 78–88.10.1016/j.ijsolstr.2016.04.024
  11. 11. Farragher T.F. (2014), Thermomechanical Analysis of P91 Power Plant Components, PhD Thesis, National University of Ireland Galway, https://aran.library.nuigalway.ie/xmlui/handle/10379/4161.
  12. 12. Fournier B., Salvi M., Dalle F., De Carlan Y., Caës C., Sauzay M., Pineau A. (2010), Lifetime prediction of 9-12%Cr martensitic steels subjected to creep-fatigue at high temperature, International Journal of Fatigue, 32(6), 971–978.10.1016/j.ijfatigue.2009.10.017
  13. 13. Fournier B., Sauzay M., Caës C., Noblecourt M., Mottot M., Bougault A., Rabeau V., Man J., Gillia O., Lemoine P., Pineau A. (2008), Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction, International Journal of Fatigue, 30(10–11), 1797–1812.10.1016/j.ijfatigue.2008.02.006
  14. 14. Frederick C.O., Armstrong P.J. (2007), A mathematical representation of the multiaxial Bauschinger effect, Materials at High Temperatures, 24(1), 1–26.10.3184/096034007X207589
  15. 15. Jones W.B., Van Den Avyle J.A. (1980), Substructure and strengthening mechanisms in 2.25 Cr-1 Mo steel at elevated temperatures, Metallurgical Transactions, A 11A, 1275–1286.10.1007/BF02653481
  16. 16. Kannan R., Sankar V., Sandhya R., Mathew M.D. (2013), Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels, Procedia Engineering, 55, 149–153.10.1016/j.proeng.2013.03.234
  17. 17. Kim S., Weertman J.R. (1988), Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions, A 19A, 999–1007.10.1007/BF02628384
  18. 18. Kruml T., Polák J. (2001), Fatigue softening of X10CrAl24 ferritic steel, Materials Science and Engineering, A 319, 564–568.10.1016/S0921-5093(01)01004-8
  19. 19. Kyaw S.T., Rouse J.P., Lu J., Sun W. (2016), Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel, International Journal of Mechanical Sciences, 115–116, 168–179.10.1016/j.ijmecsci.2016.06.014
  20. 20. Li M., Barrett R.A., Scully S., Harrison N.M., Leen S.B., O’Donoghue P.E. (2016), Cyclic plasticity of welded P91 material for simple and complex power plant connections, International Journal of Fatigue, 87, 391–404.10.1016/j.ijfatigue.2016.02.005
  21. 21. Lu J., Sun W., Becker A., Saad A.A. (2015), Simulation of the fatigue behaviour of a power plant steel with a damage variable,. International Journal of Mechanical Sciences, 100, 145–157.10.1016/j.ijmecsci.2015.06.019
  22. 22. Mroziński S. (2011), The influence of loading program on the course of fatigue damage cumulation, Journal of Theoretical and Applied Mechanics, 49(1), 83–95.
  23. 23. Mroziński S., Golański G. (2014), Influence of temperature change on fatigue properties of P91 steel, Materials Research Innovations, 18 (2), 504–508.10.1179/1432891714Z.000000000546
  24. 24. Nagesha A., Valsan M., Kannan R., Bhanu Sankara Rao K., Mannan S.L. (2002), Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1Mo ferritic steel, International Journal of Fatigue, 1285–1293.10.1016/S0142-1123(02)00035-X
  25. 25. Korelc J. (2016), AceGen 6.824 Windows.
  26. 26. Saad A.A., Hyde T.H., Sun W., Hyde C.J., Tanner D.W.J. (2013), Characterization of viscoplasticity behaviour of P91 and P92 power plant steels, International Journal of Pressure Vessels and Piping, 111–112, 246–252.10.1016/j.ijpvp.2013.08.001
  27. 27. Saad A.A., Sun W., Hyde T.H., Tanner D.W.J. (2011), Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature, Procedia Engineering, 1103–1108.10.1016/j.proeng.2011.04.182
  28. 28. Saanouni K., Devalan P. (2012), Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation, Wiley.10.1002/9781118562192
  29. 29. Sauzay M., Brillet H., Monnet I., Mottot M., Barcelo F., Fournier B., Pineau A. (2005), Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science and Engineering A, 400–401(1-2), 241–244.10.1016/j.msea.2005.02.092
  30. 30. Shankar V., Valsan M., Rao K.B.S., Kannan R., Mannan S.L., Pathak S.D. (2006), Low cycle fatigue behavior and microstructural evolution of modified 9Cr-1Mo ferritic steel, Materials Science and Engineering A, 437, 413–422.10.1016/j.msea.2006.07.146
  31. 31. Skrzypek J.J., Kuna-Ciskał H. (2003), Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics, Lecture Notes in Applied and Computational Mechanics, 9, 143–184.10.1007/978-3-540-36418-4_5
  32. 32. Sulich P., Egner W., Mroziński S., Egner H. (2017), Modeling of cyclic thermo-elastic-plastic behaviour of P91 steel, Journal of Theoretical and Applied Mechanics, 55(2), 595–606.10.15632/jtam-pl.55.2.595
  33. 33. Taleb L., Cailletaud G. (2010), An updated version of the multimechanism model for cyclic plasticity, International Journal of Plasticity, 26(6), 859–874.10.1016/j.ijplas.2009.11.002
  34. 34. Wolfram Mathematica 11.2. (2017), http://www.wolfram.com/mathematica/new-in-11/
  35. 35. Xie X., Jiang W., Chen J., Zhang X., Tu S.-T. (2019), Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling, International Journal of Plasticity, 114, 196-214.10.1016/j.ijplas.2018.11.001
  36. 36. Zhang Z., Delagnes D., Bernhart G. (2002), Anisothermal cyclic plasticity modelling of martensitic steels, International Journal of Fatigue, 24(6), 635–648.10.1016/S0142-1123(01)00182-7
  37. 37. Zhao P., Xuan F. Z., Wu D.L. (2017), Cyclic softening behaviors of modified 9–12%Cr steel under different loading modes: Role of loading levels, International Journal of Mechanical Sciences, 131–132, 278–285.10.1016/j.ijmecsci.2017.07.001
  38. 38. Zhou J., Sun Z., Kanouté P., Retraint, D. (2018), Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, International Journal of Plasticity, 107, 54–78.10.1016/j.ijplas.2018.03.013
DOI: https://doi.org/10.2478/ama-2020-0010 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 69 - 78
Submitted on: Jun 17, 2019
Accepted on: May 15, 2020
Published on: Jul 24, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Władysław Egner, Piotr Sulich, Stanisław Mroziński, Halina Egner, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.