Have a personal or library account? Click to login
Practical Aspects of Design and Testing Unmanned Aerial Vehicles Cover

Practical Aspects of Design and Testing Unmanned Aerial Vehicles

Open Access
|Apr 2020

References

  1. 1. Aghaeeyan A,, Abdollahi F., Talebi H.A., (2015), UAV–UGVs cooperation: With a moving center based trajectory, Robotics and Autonomous Systems, 63, Part 1,1-9.10.1016/j.robot.2014.10.005
  2. 2. Bonali F.L., Tibaldi A., Marchese F., Fallati L., Russo E., Corselli C., Savini A., (2019), UAV-based surveying in volcano-tectonics: An example from the Iceland rift, Journal of Structural Geology, 121, 46-64.10.1016/j.jsg.2019.02.004
  3. 3. Cai G., Feng L., Chen B., Lee T.H., (2008), Systematic design methodology and construction of UAV helicopters, Mechatronics 18, 545–558.10.1016/j.mechatronics.2008.05.011
  4. 4. Cechowicz R., (2017), Bias drift estimation for mems gyroscope used in inertial navigation, Acta Mechanica et Automatica, 11(2), 104-110.10.1515/ama-2017-0016
  5. 5. Cetinsoy E., Dikyar S., Hancer C., Oner K.T., Sirimoglu E., Unel M., Aksit M.F., (2012), Design and construction of a novel quad tilt-wing UAV, Mechatronics 22, 723–745.10.1016/j.mechatronics.2012.03.003
  6. 6. Cho A., Kang Y.S., Park B., Yoo Ch.S., Koo S.O., (2011), Altitude Integration of Radar Altimeter and GPS/INS for Automatic Takeoff and Landing of a UAV, 2011 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 1429-1432.
  7. 7. Choudhary G., Sharma V., You I., (2019), Sustainable and secure trajectories for the military Internet of Drones (IoD) through an efficient Medium Access Control (MAC) protocol, Computers & Electrical Engineering, 74, 59-73.10.1016/j.compeleceng.2019.01.007
  8. 8. Deng H., Arif U., Fu Q., Xi Z., Quan Q., Cai K., (2018), Visual–inertial estimation of velocity for multicopters based on vision motion constraint, Robotics and Autonomous Systems, 107, 262-279.10.1016/j.robot.2018.06.010
  9. 9. Ebeid E., Skriver M., Husum K., Jensen K., Pagh U., (2018), A Survey of Open-Source UAV Flight Controllers and Flight Simulators, Microprocessors and Microsystems, 61, 11-20.10.1016/j.micpro.2018.05.002
  10. 10. Ferrarese G., (2017), Bandwidth Assessment for MultiRotor UAVs,Acta Mechanica et Automatica, 11(2), 150-153.10.1515/ama-2017-0023
  11. 11. Fujimori A., Ukigai Y., Santoki A., Oh-hara S., (2018), Autonomous flight control system of quadrotor and its application to formation control with mobile robot. IFAC-PapersOnLine, 51(22), 343-347.
  12. 12. Gómez A., Rodríguez A., Sanchez C., Luis G., Hernández C., Cuerno R., (2019), Remotely Piloted Aircraft Systems conceptual design methodology based on factor analysis, Aerospace Science and Technology, 90, 368-387.10.1016/j.ast.2019.04.041
  13. 13. https://www.youtube.com/watch?v=4rh5Z1fHzq4&feature=youtu.be (access on 23.12.2019).
  14. 14. https://www.youtube.com/watch?v=4WOrWoNT-bM&feature=youtu.be (access on 23.12.2019).
  15. 15. https://www.youtube.com/watch?v=eJ9QhFdsagQ&feature=youtu.be (access on 23.12.2019).
  16. 16. https://www.youtube.com/watch?v=tq4ihl6fRDg&feature=youtu.be (access on 23.12.2019).
  17. 17. Huang L., Song J., Zhang Ch., Cai G., (2018), Design and performance analysis of landmark-based INS/Vision Navigation System for UAV, Optik, 172, 484-493.10.1016/j.ijleo.2018.07.050
  18. 18. Khamseh H.B., Janabi-Sharifi F., Abdessameud A., (2018), Aerial manipulation—A literature survey, Robotics and Autonomous Systems, 107, 221-235.10.1016/j.robot.2018.06.012
  19. 19. Kopichev M., Ignatiev K., Putov A., (2013), Autonomous Control and Stabilization System for Unmanned Aerial Vehicles, IFAC Proceedings Volumes, 46(30), 240-243.
  20. 20. Kownacki C., (2016), Multi-UAV Flight on the Basis of Virtual Structure Combined with Behavioral Approach, Acta Mechanica et Auto-matica, 10(2), 92-99.10.1515/ama-2016-0015
  21. 21. Luo Q., Yang X., Zhou Y., (2019). Nature-inspired approach: An enhanced moth swarm algorithm for global optimization, Mathematics and Computers in Simulation, 159, 57-92.10.1016/j.matcom.2018.10.011
  22. 22. María de Miguel Molina, Virginia Santamarina Campos, M. Ángeles Carabal Montagud, Blanca de Miguel Molina, (2018), Ethics for civil indoor drones: A qualitative analysis, International Journal of Micro Air Vehicles, 10(4), 340–351.
  23. 23. Nallapaneni Manoj Kumara, Sudhakar K., Samykano M., Jayaseelan V., (2018), On the technologies empowering drones for intelligent monitoring of solar photovoltaic power plants, International Conference on Robotics and Smart Manufacturing (RoSMa2018), Procedia Computer Science, 133, 585–593.10.1016/j.procs.2018.07.087
  24. 24. Olivas F., Valdez F., Castillo O., González C.I., Martinez G.E., Melin P., (2017), Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems, Appl. Soft Comput, 74-87.10.1016/j.asoc.2016.12.015
  25. 25. Puchała K., Szymczyk E., Jachimowicz J., (2015), FEM design of composite – metal joint for bearing failure analysis, Przegląd Mechaniczny, 33 – 41.
  26. 26. Pulvera A., Weib R., (2018), Optimizing the spatial location of medical drones, Applied Geography, 90, 9–16.10.1016/j.apgeog.2017.11.009
  27. 27. Roseneia Rodrigues Santos de Melo, Dayana B.C., Juliana Sampaio Álvares, Irizarry J., (2017), Applicability of unmanned aerial system (UAS) for safety inspection on construction sites, Safety Science, 98, 174-185.10.1016/j.ssci.2017.06.008
  28. 28. Socha K., Dorigo M., (2008), Ant colony optimization for continuous domains, European Journal of Operational Research, 1155-1173.10.1016/j.ejor.2006.06.046
  29. 29. Souza D., Pinto V., Nascimento L., Torres J., Gomes J., Sa-Junior J., Sa-Junior J., Almeida R., (2016), Battery Discharge forecast applied in Unmanned Aerial Vehicle, Przegląd Elektrotechniczny 02/2016, 185-192.
  30. 30. Stančić R. Graovac S., (2010), The integration of strap-down INS and GPS based on adaptive error damping, Robotics and Autonomous Systems, 58(10), 1117-1129.10.1016/j.robot.2010.06.004
  31. 31. Sun J., Li B., Wen Ch.Y., Chen Ch.K., (2018), Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle, Mechatronics 56, 1–15.10.1016/j.mechatronics.2018.10.001
  32. 32. Szywalski P., (2017), Design of the autonomous flight algorithm for Unmanned Aerial System, Opole, 4-61
  33. 33. Szywalski P., Waindok A., (2018), Analysis of the quadrocopter class 130 frame deformation made with using 3D printing technology, Przegląd Mechaniczny, 39-44.
  34. 34. Szywalski P., Wajnert D., (2018), Possibility Analysis of the Location Measurement by Using the GPS Receiver and Barometric Altimeter, Pomiary Automatyka Robotyka, 33-39.10.14313/PAR_229/33
  35. 35. Zhu W., Dong Y., Wang G., Qiao Z., Gao Z., (2013), High-precision Barometric Altitude Measurement Method and Technology, 2013 IEEE International Conference on Information and Automation (ICIA), 430-435.10.1109/ICInfA.2013.6720337
DOI: https://doi.org/10.2478/ama-2020-0008 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 50 - 58
Submitted on: Aug 1, 2019
Accepted on: Apr 28, 2020
Published on: Apr 30, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Patryk Szywalski, Andrzej Waindok, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.