Have a personal or library account? Click to login
Modelling Methodology of Piston Pneumatic Air Engine Operation Cover

Modelling Methodology of Piston Pneumatic Air Engine Operation

By: Dariusz Szpica and  Michal Korbut  
Open Access
|Jan 2020

References

  1. 1. A policy framework for climate and energy in the period from 2020 to 2030. 2014. Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions.
  2. 2. Allam S., Zakaria M. (2018), Experimental investigation of compressed air engine performance, International Journal of Engineering Inventions, 7(1), 13–20.
  3. 3. Badr O., Probert S.D., O’Callaghan P.W. (1985), Multi-vane expanders: internal-leakage losses, Applied Energy, 20(1), 1–46.10.1016/0306-2619(85)90033-9
  4. 4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1), 1–6.10.17531/ein.2015.1.1
  5. 5. Borawski A. (2016), Suggested research method for testing selected tribological properties of friction components in vehicle braking systems, Acta Mechanica et Automatica, 10(3), 223–226.10.1515/ama-2016-0034
  6. 6. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs – a review, Acta Mechanica et Automatica, 13(3), 189–199.10.2478/ama-2019-0025
  7. 7. Brejaud P., Higelin P., Charlet A. et al. (2011), Convective Heat Transfer in a Pneumatic Hybrid Engine, Oil & Gas Science and Technology, 66(6), 1035–1051.10.2516/ogst/2011121
  8. 8. Commission Regulation (EU) 2017/1154 of 7 June 2017 amending Regulation (EU) 2017/1151 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Regulation (EC) No 692/2008 and Directive 2007/46/EC of the European Parliament and of the Council as regards real-driving emissions from light passenger and commercial vehicles (Euro 6), Official Journal of the European Union, L175, 7.7.2017, page 708.
  9. 9. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Politechnika Lubelska, Lublin.
  10. 10. Dimitrova Z., Marechal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151, 168–177.10.1016/j.apenergy.2015.03.057
  11. 11. Duk M., Czarnigowski J. (2012), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b), 59–63.
  12. 12. Dvorak L., Fojtasek K., Rehacek V. (2017), Calculations of parameters and mathematical model of rotary air motor, EPJ Web of Conferences, 143, 02018, 4p.10.1051/epjconf/201714302018
  13. 13. Fang Y.D., Lu Y.J., Yu X.L., Roskilly A.P. (2018), Experimental study of a pneumatic engine with heat supply to improve the overall performance, Applied Thermal Engineering, 134, 78–85.10.1016/j.applthermaleng.2018.01.113
  14. 14. Fox J.T., Yang K., Hunsicker R. (2019), Diesel Particulate Filter Cleaning Effectiveness: Estimated Ash Loading, Quantified Particulate Removal, and Post-cleaning Filter Pressure Drop. Emission Control Science and Technology, 1–11 (on-line).10.1007/s40825-019-00149-8
  15. 15. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12), 731–734.10.3103/S1068371215120111
  16. 16. Heywood B.H. (1988), Internal combustion engine fundamentals, McGraw-Hill Series in Mechanical Engineering, New York, USA.
  17. 17. http://wltpfacts.eu/ [online cit.: 2019.11.10].
  18. 18. http://www.engineair.com.au/ [online cit.: 2019.11.10].
  19. 19. http://www.jawa-50.cz/clanek/jawa-23-mustang-technicke-udaje.html [online cit.: 2019.11.10].
  20. 20. https://www.mdi.lu/ [online cit.: 2019-03.01].
  21. 21. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6),571–579.10.2516/ogst:2004041
  22. 22. Kalekin V.S., Kalekin D.V., A. N. Nefedchenko A.N. (2014), A Mathematical Model of a Piston Pneumatic Engine with Self-Acting air Distribution, Chemical and Petroleum Engineering, 50(1-2), 91–98.10.1007/s10556-014-9861-6
  23. 23. Kaminski Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4), 289–311.10.1504/IJHVS.2013.056802
  24. 24. Kaminski Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4), 637–643.
  25. 25. Librovich B.V., Nowakowski A.F. (2004), Analysis, design, and modeling of a rotary vane engine (RVE), Journal of Mechanical Design, 126(4), 711–720.10.1115/1.1711823
  26. 26. Michael M., Voser C., Onder C et al. (2012), Design methodology of camshaft driven charge valves for pneumatic engine starts, IFAC Proceedings, 45(30), 33–40.10.3182/20121023-3-FR-4025.00019
  27. 27. Mieczkowski G. (2017), The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry, Journal of Theoretical and Applied Mechanics, 55(1), 69–86.10.15632/jtam-pl.55.1.69
  28. 28. Mieczkowski G. (2018), Optimization and prediction of durability and utility features of three-layer piezoelectric transducers, Mechanika, 24(3), 335–342.10.5755/j01.mech.24.3.17953
  29. 29. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(2), 301–310.10.17531/ein.2019.2.15
  30. 30. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222, 14p.10.3390/s20010222698278631906057
  31. 31. Mikulski M., Balakrishnan P.R., Doosje E. et al. (2018), Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine, SAE Technical Papers, 2018-01-0254, 14p.10.4271/2018-01-0254
  32. 32. Mikulski M., Wierzbicki S., Pietak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 36 (2), 225–238.10.1515/cpe-2015-0015
  33. 33. Mitianiec W. (2008), Pneumatic two-stroke engine as an alternative power source, Journal of KONES Powertrain and Transport, 15(3), 357–366.
  34. 34. Onishi S., Hong J.S., Do J.S. et al. (1979), Active thermo-atmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper 790501.
  35. 35. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6), 501–506;10.5755/j01.mech.21.6.11147
  36. 36. Raslavicius L., Kersys A. Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1), 380–396.10.1016/j.rser.2016.09.109
  37. 37. Raslavicius L., Kersys A., Mockus S. et al. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32, 513–525.10.1016/j.rser.2014.01.052
  38. 38. Resitoglu I.A., Altinisik K., Keskin A. et al. (2020), The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines, Fuel, 262, 116501.10.1016/j.fuel.2019.116501
  39. 39. Semenchukova V., Grishin Y., Malastowski N. (2018), Mathematical modeling of a piston engine pneumatic start, International Russian Automation Conference (RusAutoCon), 1–4.10.1109/RUSAUTOCON.2018.8501794
  40. 40. Senthil Kumar J., Ramesh Bapu B.R., Sivasaravanan S. et al. (2019), Experimental studies on emission reduction in DI Diesel engine by using nano catalyst coated catalytic converter, International Journal of Ambient Energy, 1–17 (on-line).10.1080/01430750.2019.1694584
  41. 41. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181, 200–205.10.1016/j.proeng.2017.02.370
  42. 42. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Natural Gas Science and Engineering, 34, 1127–1136.10.1016/j.jngse.2016.08.014
  43. 43. Szpica D. (2018a), Modelling of the operation of a Dual Mass Flywheel (DMF) for different engine-related distortions, Mathematical and Computer Modelling of Dynamical Systems, 24(6), 643–660.10.1080/13873954.2018.1521839
  44. 44. Szpica D. (2018b), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1), 186–196.10.3846/16484142.2016.1149884
  45. 45. Szpica D. (2018c), The determination of the flow characteristics of a low-pressure vapor-phase injector with a dynamic method, Flow Measurement and Instrumentation, 62, 44–55.10.1016/j.flowmeasinst.2018.05.010
  46. 46. Walus K.J., Wargula L., Krawiec P. et al. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4), 3243–3259.10.1007/s11356-017-0847-8581157029238926
  47. 47. Wargula L., Walus K. J., Krawiec P. (2018), Small engines spark ignited (SI) for non-road mobile machinery-review, Proceedings of 22nd International Scientific Conference. Transport Means 2018, T.2, 585–591.
  48. 48. Zwierzchowski J. (2017), Design type air engine Di Pietro, EPJ Web Conf., 143 02149.
DOI: https://doi.org/10.2478/ama-2019-0037 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 271 - 278
Submitted on: Dec 16, 2019
Accepted on: Jan 18, 2020
Published on: Jan 30, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Dariusz Szpica, Michal Korbut, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.