References
- 1. Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R. (2011), Stress analysis and fatigue of welded structures, Weld World, 55(7–8), 2–21.10.1007/BF03321303
- 2. Chung HY., Liu SH., Lin RS., Ju SH. (2008), Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, Int. Journal of Fatigue, 30(10–11), 1861-1872.
- 3. Dong P. (2001), A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. Journal of Fatigue, 23(10), 865–876.10.1016/S0142-1123(01)00055-X
- 4. European Committee for Standardization (CES) (2005), Eurocode 3: Design of steel structures - Part 1–9, Fatigue, Brussels: CES; EN 1993-1-9:2005.
- 5. Fayard JL., Bignonnet A. and Dang Van K. (1996), Fatigue design criteria for welded structures, Fatigue Fracture Eng. Materials & Structures, 19(6), 723–729.
- 6. Fricke W. (2012), IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis: IIW-2006-09, Woodhead Publishing Series in Welding and Other Joining Technologies, 2-41.10.1533/9780857098566.3
- 7. Fricke, W. (2013), IIW guideline for the assessment of weld root fatigue, Weld World, 57, 753.10.1007/s40194-013-0066-y
- 8. Hobbacher A.F. (2009), The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated, International Journal of Fatigue, 31, 50–58.10.1016/j.ijfatigue.2008.04.002
- 9. Iida K., Uemura T., (1996), Stress concentration factor formulas widely used in Japan, Fatigue Fract Eng Mater Struct., 19(6), 779–786.
- 10. ISO 9692-1 (2013) Welding and allied processes — Types of joint preparation — Part 1: Manual metal arc welding, gas-shielded metal arc welding, gas welding, TIG welding and beam welding of steels.
- 11. Kranz B., Sonsino C.M. (2010), Verification of FAT Values for the Application of the Notch Stress Concept with the Reference Radii Rref = 1.00 and 0.05 mm, Weld World, 54(7-8), 218-224.10.1007/BF03263507
- 12. Livieri P., Lazzarin, P. (2005), Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. Journal of Fracture, 133(3), 247-276.10.1007/s10704-005-4043-3
- 13. Lotsberg I., Sigurdsson G. (2006), Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures, J. Offshore Mech. Arct. Eng., 128(4), 330-336.10.1115/1.2355512
- 14. Molski K.L., Tarasiuk P., Glinka G. (2019), Description of stress concentration at tee welded joints subjected to tensile and bending loads, Opole University of Technology, Oficyna Wydawnicza, Studia i Monografie, 516, 61–80 (in Polish).
- 15. Monahan C.C. (1995), Early fatigue cracks growth at welds, Computational Mechanics Publications, Southampton,
- 16. Niemi E., Fricke W. Maddox S. J. (2018), Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, https://doi.org/10.1007/978-981-10-5568-3.10.1007/978-981-10-5568-3
- 17. Peterson R.E. (1974), Stress concentration design factors, 2nd ed., Wiley, New York.
- 18. Radaj D., Sonsino CM., Fricke W. (2009), Recent developments in local concepts of fatigue assessment of welded joints, International Journal of Fatigue, 31(1), 2–11.10.1016/j.ijfatigue.2008.05.019
- 19. Remes, H., Varsta, P. (2010), Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach, Weld World, 54(7-8), 189-207.10.1007/BF03263505
- 20. Schijve J. (2012), Fatigue predictions of welded joints and the effective notch stress concept, International Journal of Fatigue, 45, 31–38.10.1016/j.ijfatigue.2012.06.016
- 21. Singh P.J., Achar D.R.G., Guha B., Nordberg H. (2002), Influence of weld geometry and process on fatigue crack growth characteristics of AISI 304L cruciform joints containing lack of penetration defects, Sci. Technol. Weld Join., 7(5), 306–312.10.1080/174329313X13789830157465
- 22. Singh P.J., Guha B., Achar D.R.G. (2003), Fatigue life prediction using two stage model for AISI 304L cruciform joints, with different fillet geometry, failing at toe, Sci. Technol. Weld. Join., 8(1), 69–75.10.1179/136217103225008928
- 23. Sonsino C.M., Fricke W, de Bruyne F., Hoppe A., Ahmadi A., Zhang G. (2012), Notch stress concepts for the fatigue assessment of welded joints – Background and applications, Int. Journal of Fatigue, 34(1), 2–16.10.1016/j.ijfatigue.2010.04.011
- 24. Stenberg T., Barsoum Z., Balawi S.O.M. (2015), Comparison of local stress based concepts — Effects of low-and high cycle fatigue and weld quality, Engineering Failure Analysis, 57, 323–333.10.1016/j.engfailanal.2015.07.022
- 25. Tchoffo Ngoula D., Beier H. Th., Vormwald M. (2017), Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, International Journal of Fatigue, 101(2), 253-262.10.1016/j.ijfatigue.2016.09.020
- 26. Tsuji I. (1990), Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints, Trans West Jpn Soc Naval Architects, 80, 241–251.
- 27. Ushirokawa O., Nakayama E. (1983), Stress concentration factor at welded joints, Ishikawajima–Harima Eng. Rev., 23(4), 351–355.
- 28. Wooryong P., Chitoshi M. (2008), Fatigue assessment of large-size welded joints based on the effective notch stress approach, International Journal of Fatigue, 30(9), 1556-1568.10.1016/j.ijfatigue.2007.11.012
- 29. Young J.Y., Lawrence F.V. (1985), Analytical and graphical aids for the fatigue design of weldments, Fatigue Fracture Eng Mater Struct., 8(3), 223–241.
- 30. Zerbst U., Madia M., Schork B. (2016), Fracture mechanics based determination of the fatigue strength of weldments, Procedia Structural Integrity, 1, 10-17.10.1016/j.prostr.2016.02.003