Have a personal or library account? Click to login
Stress Concentration at Load-Carrying Fillet Welded Cruciform Joints Subjected to Tensile and Bending Loads Cover

Stress Concentration at Load-Carrying Fillet Welded Cruciform Joints Subjected to Tensile and Bending Loads

Open Access
|Jan 2020

References

  1. 1. Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R. (2011), Stress analysis and fatigue of welded structures, Weld World, 55(7–8), 2–21.10.1007/BF03321303
  2. 2. Chung HY., Liu SH., Lin RS., Ju SH. (2008), Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, Int. Journal of Fatigue, 30(10–11), 1861-1872.
  3. 3. Dong P. (2001), A structural stress definition and numerical implementation for fatigue analysis of welded joints, Int. Journal of Fatigue, 23(10), 865–876.10.1016/S0142-1123(01)00055-X
  4. 4. European Committee for Standardization (CES) (2005), Eurocode 3: Design of steel structures - Part 1–9, Fatigue, Brussels: CES; EN 1993-1-9:2005.
  5. 5. Fayard JL., Bignonnet A. and Dang Van K. (1996), Fatigue design criteria for welded structures, Fatigue Fracture Eng. Materials & Structures, 19(6), 723–729.
  6. 6. Fricke W. (2012), IIW Recommendations for the Fatigue Assessment of Welded Structures by Notch Stress Analysis: IIW-2006-09, Woodhead Publishing Series in Welding and Other Joining Technologies, 2-41.10.1533/9780857098566.3
  7. 7. Fricke, W. (2013), IIW guideline for the assessment of weld root fatigue, Weld World, 57, 753.10.1007/s40194-013-0066-y
  8. 8. Hobbacher A.F. (2009), The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated, International Journal of Fatigue, 31, 50–58.10.1016/j.ijfatigue.2008.04.002
  9. 9. Iida K., Uemura T., (1996), Stress concentration factor formulas widely used in Japan, Fatigue Fract Eng Mater Struct., 19(6), 779–786.
  10. 10. ISO 9692-1 (2013) Welding and allied processes — Types of joint preparation — Part 1: Manual metal arc welding, gas-shielded metal arc welding, gas welding, TIG welding and beam welding of steels.
  11. 11. Kranz B., Sonsino C.M. (2010), Verification of FAT Values for the Application of the Notch Stress Concept with the Reference Radii Rref = 1.00 and 0.05 mm, Weld World, 54(7-8), 218-224.10.1007/BF03263507
  12. 12. Livieri P., Lazzarin, P. (2005), Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values, Int. Journal of Fracture, 133(3), 247-276.10.1007/s10704-005-4043-3
  13. 13. Lotsberg I., Sigurdsson G. (2006), Hot Spot Stress S-N Curve for Fatigue Analysis of Plated Structures, J. Offshore Mech. Arct. Eng., 128(4), 330-336.10.1115/1.2355512
  14. 14. Molski K.L., Tarasiuk P., Glinka G. (2019), Description of stress concentration at tee welded joints subjected to tensile and bending loads, Opole University of Technology, Oficyna Wydawnicza, Studia i Monografie, 516, 61–80 (in Polish).
  15. 15. Monahan C.C. (1995), Early fatigue cracks growth at welds, Computational Mechanics Publications, Southampton,
  16. 16. Niemi E., Fricke W. Maddox S. J. (2018), Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, https://doi.org/10.1007/978-981-10-5568-3.10.1007/978-981-10-5568-3
  17. 17. Peterson R.E. (1974), Stress concentration design factors, 2nd ed., Wiley, New York.
  18. 18. Radaj D., Sonsino CM., Fricke W. (2009), Recent developments in local concepts of fatigue assessment of welded joints, International Journal of Fatigue, 31(1), 2–11.10.1016/j.ijfatigue.2008.05.019
  19. 19. Remes, H., Varsta, P. (2010), Statistics of Weld Geometry for Laser-Hybrid Welded Joints and its Application within Notch Stress Approach, Weld World, 54(7-8), 189-207.10.1007/BF03263505
  20. 20. Schijve J. (2012), Fatigue predictions of welded joints and the effective notch stress concept, International Journal of Fatigue, 45, 31–38.10.1016/j.ijfatigue.2012.06.016
  21. 21. Singh P.J., Achar D.R.G., Guha B., Nordberg H. (2002), Influence of weld geometry and process on fatigue crack growth characteristics of AISI 304L cruciform joints containing lack of penetration defects, Sci. Technol. Weld Join., 7(5), 306–312.10.1080/174329313X13789830157465
  22. 22. Singh P.J., Guha B., Achar D.R.G. (2003), Fatigue life prediction using two stage model for AISI 304L cruciform joints, with different fillet geometry, failing at toe, Sci. Technol. Weld. Join., 8(1), 69–75.10.1179/136217103225008928
  23. 23. Sonsino C.M., Fricke W, de Bruyne F., Hoppe A., Ahmadi A., Zhang G. (2012), Notch stress concepts for the fatigue assessment of welded joints – Background and applications, Int. Journal of Fatigue, 34(1), 2–16.10.1016/j.ijfatigue.2010.04.011
  24. 24. Stenberg T., Barsoum Z., Balawi S.O.M. (2015), Comparison of local stress based concepts — Effects of low-and high cycle fatigue and weld quality, Engineering Failure Analysis, 57, 323–333.10.1016/j.engfailanal.2015.07.022
  25. 25. Tchoffo Ngoula D., Beier H. Th., Vormwald M. (2017), Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, International Journal of Fatigue, 101(2), 253-262.10.1016/j.ijfatigue.2016.09.020
  26. 26. Tsuji I. (1990), Estimation of stress concentration factor at weld toe of non-load carrying fillet welded joints, Trans West Jpn Soc Naval Architects, 80, 241–251.
  27. 27. Ushirokawa O., Nakayama E. (1983), Stress concentration factor at welded joints, Ishikawajima–Harima Eng. Rev., 23(4), 351–355.
  28. 28. Wooryong P., Chitoshi M. (2008), Fatigue assessment of large-size welded joints based on the effective notch stress approach, International Journal of Fatigue, 30(9), 1556-1568.10.1016/j.ijfatigue.2007.11.012
  29. 29. Young J.Y., Lawrence F.V. (1985), Analytical and graphical aids for the fatigue design of weldments, Fatigue Fracture Eng Mater Struct., 8(3), 223–241.
  30. 30. Zerbst U., Madia M., Schork B. (2016), Fracture mechanics based determination of the fatigue strength of weldments, Procedia Structural Integrity, 1, 10-17.10.1016/j.prostr.2016.02.003
DOI: https://doi.org/10.2478/ama-2019-0033 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 245 - 250
Submitted on: Nov 25, 2019
Accepted on: Dec 18, 2019
Published on: Jan 30, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Krzysztof L. Molski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.