Have a personal or library account? Click to login
Mixed Boundary Value Problem for an Anisotropic Thermoelastic Half-Space Containing Thin Inhomogeneities Cover

Mixed Boundary Value Problem for an Anisotropic Thermoelastic Half-Space Containing Thin Inhomogeneities

Open Access
|Jan 2020

References

  1. 1. Bozhydarnyk V., Pasternak I., Sulym H., Oliyarnyk N. (2011), BEM approach for the antiplane shear of anisotropic solids containing thin inhomogeneities, Acta mechanica et automatica, 5(4), 11–16.
  2. 2. Chen H., Wang Q., Liu G. R., Wang Y., Sun J. (2016), Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method, International Journal of Mechanical Sciences, 115–116, 123-134.10.1016/j.ijmecsci.2016.06.012
  3. 3. Hou P.F. (2011), 2D general solution and fundamental solution for orthotropic thermoelastic materials, Engineering Analysis with Boundary Elements, 35, 56–60.10.1016/j.enganabound.2010.04.007
  4. 4. Hwu C. (2010), Anisotropic elastic plates, Springer, London.10.1007/978-1-4419-5915-7
  5. 5. Li X.Y. (2012), Exact fundamental thermo-elastic solutions of a transversely isotropic elastic medium with a half infinite plane crack, International Journal of Mechanical Sciences, 59(1), 83-94.10.1016/j.ijmecsci.2012.03.007
  6. 6. Mukherjee Y.X. (1999), Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations, Engineering Analysis with Boundary Elements, 23, 89–96.10.1016/S0955-7997(98)00064-2
  7. 7. Pasternak I., Pasternak R., Sulym H. (2013), Boundary integral equations for 2D thermoelasticity of a half-space with cracks and thin inclusions, Engineering Analysis with Boundary Elements, 37, 1514–1523.10.1016/j.enganabound.2013.08.008
  8. 8. Pasternak I. (2012), Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity, Engineering Analysis with Boundary Elements, 36(12), 1931–1941.10.1016/j.enganabound.2012.07.007
  9. 9. Qin Q. (1999), Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Computational Mechanics, 23, 353–360.10.1007/s004660050415
  10. 10. Şeremet V. (2011), Deriving exact Green’s functions and integral formulas for a thermoelastic wedge, Engineering Analysis with Boundary Elements, 35(3), 527-532.10.1016/j.enganabound.2010.08.016
  11. 11. Sherief H.H., Abd El-Latief A.M. (2014), Application of fractional order theory of thermoelasticity to a 2D problem for a half-space, Applied Mathematics and Computation, 248, 584-592.10.1016/j.amc.2014.10.019
  12. 12. Shiah Y.C. (2000), Fracture mechanics analysis in 2-D anisotropic thermoelasticity using BEM, CMES, 1(3), 91–99.
  13. 13. Sulym H.T. (2007), Bases of mathematical theory of thermo-elastic equilibrium of solids containing thin inclusions, Research and Publishing center of NTSh, 2007 (in Ukrainian).
  14. 14. Tokovyy Y., Ma C-C. (2009), An explicit-form solution to the plane elasticity and thermoelasticity problems for anisotropic and inhomogeneous solids, Int J Solids Struct, 46(21), 3850–9.10.1016/j.ijsolstr.2009.07.007
  15. 15. Woo H-G., Li H. (2011), Advanced functional materials, Springer, London.10.1007/978-3-642-19077-3
  16. 16. Wu W-L. (2009), Dual Boundary Element Method Applied to Antiplane Crack Problems, Mathematical Problems in Engineering, doi:10.1155/2009/132980.10.1155/2009/132980
  17. 17. Yang W., Zhou Q., Zhai Yu, Lyu D., Huang Y., Wang J., Jin X., Keer M.L., Wang Q.J. (2019), Semi-analytical solution for steady state heat conduction in a heterogeneous half space with embedded cuboidal inhomogeneity, International Journal of Thermal Sciences, 139, 326-338.10.1016/j.ijthermalsci.2019.02.019
DOI: https://doi.org/10.2478/ama-2019-0032 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 238 - 244
Submitted on: May 16, 2019
Accepted on: Dec 13, 2019
Published on: Jan 30, 2020
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Heorhiy Sulym, Iaroslav Pasternak, Mariia Smal, Andrii Vasylyshyn, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.