1. Aifantis E. C. (2011), On the gradient approach-relation to Eringen’s nonlocal theory, International Journal of Engineering Science, 49(12), 1367–1377.10.1016/j.ijengsci.2011.03.016
2. Bargmann S., Klusemann B., Markmann J., Schnabel J. E., Schneider K., Soyarslan C., Wilmers J. (2018), Generation of 3D representative volume elements for heterogeneous materials: A review, Progress in Materials Science, 96, 322-384.10.1016/j.pmatsci.2018.02.003
3. Bažant Z. P., Jirásek M. (2002), Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics, 128(11),1119–1149.10.1061/(ASCE)0733-9399(2002)128:11(1119)
4. Bostanabad R., Zhang Y., Li X., Kearney T., Brinson L., Apley D., Liu W., Chen W. (2018), Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Progress in Materials Science, 95, 1-41.10.1016/j.pmatsci.2018.01.005
7. Di Paola M., Failla, G., Zingales M. (2010), The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions, International Journal of Solids and Structures, 47(18-19), 2347-2358.10.1016/j.ijsolstr.2010.02.022
8. Dormieux L., Kondo D. (2013), Non linear homogenization approach of strength of nanoporous materials with interface effects, International Journal of Engineering Science, 71, 102–110.10.1016/j.ijengsci.2013.04.006
10. Drugan W.J., Willis J.R. (1996), A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, 44(4), 497–524.10.1016/0022-5096(96)00007-5
12. Guo N., Zhao J. (2016), 3D multiscale modeling of strain localization in granular media, Computers and Geotechnics, 80, 360-372.10.1016/j.compgeo.2016.01.020
13. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin, D. (2003), Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, 40(13-14), 3647–3679.10.1016/S0020-7683(03)00143-4
15. Khodabakhshi P., Reddy J. N. (2015), A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, 60-75.10.1016/j.ijengsci.2015.06.006
16. Kwok K., Boccaccini D., Persson Å. H., Frandsen H. L. (2016). Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions, International Journal of Solids and Structures, 78, 38-46.10.1016/j.ijsolstr.2015.09.020
17. Marotti de Sciarra F. (2009), On non-local and non-homogeneous elastic continua, International Journal of Solids and Structures, 46(3), 651–676.10.1016/j.ijsolstr.2008.09.018
18. Matouš K., Geers M. G., Kouznetsova V. G., Gillman A. (2017), A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 192-220.10.1016/j.jcp.2016.10.070
19. Monetto I., Drugan W. J. (2009), A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities, Journal of the Mechanics and Physics of Solids, 57(9), 1578-1595.10.1016/j.jmps.2009.05.005
20. Nahirnyj T., Tchervinka K. (2015), Mathematical Modeling of Structural and Near-Surface Non-Homogeneities in Thermoelastic Thin Films, International Journal of Engineering Science, 91, 49–62.10.1016/j.ijengsci.2015.02.001
22. Polizzotto C. (2003), Gradient elasticity and nonstandard boundary conditions, International Journal of Solids and Structures, 40(26), 7399–7423.10.1016/j.ijsolstr.2003.06.001
23. Polizzotto C. (2012), A gradient elasticity theory for second-grade materials and higher order inertia, International Journal of Solids and Structures, 49 (15), 2121–2137.10.1016/j.ijsolstr.2012.04.019
24. Rezakhani R., Zhou X.W., Cusatis G. (2017), Adaptive multiscale homogenization of the lattice discrete particle model for the analysis of damage and fracture in concrete, International Journal of Solids and Structures, 2017, 125, 50-67.10.1016/j.ijsolstr.2017.07.016
25. Saeb S., Steinmann P., Javili A. (2016), Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound, Applied Mechanics Reviews, 68(5), 050801.10.1115/1.4034024
26. Salmi M., Auslender F., Bornert M., Fogli M. (2012), Various estimates of Representative Volume Element sizes based on a statistical analysis of the apparent behavior of random linear composites, Comptes Rendus Mécanique, 340(4-5), 230-246.10.1016/j.crme.2012.02.007
27. Silling S.A. (2000), Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces. Journal of the Mechanics and Physics of Solids, 48, 175–209.10.1016/S0022-5096(99)00029-0
28. Sneddon I.N., Berry D.S. (1958), The Classical Theory of Elasticity. In: Flügge S. (eds) Elasticity and Plasticity / Elastizität und Plastizität. Handbuch der Physik / Encyclopedia of Physics, 3/6, Springer, Berlin, Heidelberg.10.1007/978-3-642-45887-3_1
29. Wang Q., Liew K. (2007), Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures, Physics Letters A, 363(3), 236–242.10.1016/j.physleta.2006.10.093
30. Wiśniewska A., Hernik S., Liber-Kneć A., Egner H. (2019), Effective properties of composite material based on total strain energy equivalence, Composites Part B: Engineering, 166, 213-220.10.1016/j.compositesb.2018.11.094