Have a personal or library account? Click to login

Common Methods in Analysing the Tribological Properties of Brake Pads and Discs – A Review

Open Access
|Nov 2019

References

  1. 1. Abdullah O. I., Schlattmann J. (2016), Temperature analysis of a pin-on-disc tribology test using experimental and numerical approaches, Friction, Vol. 4, No. 2, 135–143.10.1007/s40544-016-0110-1
  2. 2. Abebaw H. S. (2015), Analytical and Finite Element Analysis of Surface Wear on Disc Brake Rotor (Ph.D. thesis), Institute Of Technology, Addis Ababa University.
  3. 3. Abubakar A. R., Li L., James S., Ouyang H. (2006), Wear simulation and its effect on contact pressure distribution and squeal of a disc brake, in: Proc. of the International Conference on Vehicle Braking Technology IMechE.
  4. 4. Adachi K., Hutchings I. M. (2003), Wear-mode mapping for the micro-scale abrasion test, Wear, Vol. 255, No. 1–6, 23–29.10.1016/S0043-1648(03)00073-5
  5. 5. Adachi K., Hutchings I. M. (2005), Sensitivity of wear rates in the micro scale abrasion test to test conditions and material hardness, Wear, Vol. 258, No. 1–4, 318–321.10.1016/j.wear.2004.02.016
  6. 6. Adamowicz A. (2016), Finite element analysis of the 3D thermal stress state in a brake disk, Journal of Theoretical and Applied Mechanics, Vol. 54, No. 1, 205–218.10.15632/jtam-pl.54.1.205
  7. 7. Adamowicz A. (2017),Thermal stress state of the pad-disc tribosystem ad single braking, Journal of Friction and Wear, Vol. 38, No. 2, 24–30.10.3103/S1068366617020027
  8. 8. ASTM G99-17 (2017), Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA.
  9. 9. Axén N., Hogmark S., Jacobson S. (2001), Modern Tribology Handbook, Chapter 13: Friction and Wear Measurement Techniques, CRC Press, 493–511.10.1201/9780849377877.ch13
  10. 10. Balotin J. G., Neis P. D. (2010), Analysis of the influence of temperature on the friction coefficient of friction materials, in: Proc. ABCM Symposium Series in Mechatronics.
  11. 11. Belhocine A., Bouchetara M. (2014), Structural And Thermal Analysis Of Automotive Disc Brake Rotor, Archive Of Mechanical Engineering, Vol. 61, No. 1, 89–113.10.2478/meceng-2014-0005
  12. 12. Bello J. O., Wood R. J. K. (2005), Micro-abrasion of filled and unfilled polyamide 11 coatings, Wear, Vol. 258, No. 1–4, 294–302.10.1016/j.wear.2004.08.008
  13. 13. Bhushan B. (2002), Introduction to Tribology, John Wiley & Sons Inc., New York.
  14. 14. Blau P. J. (2001), Compositions, Functions and testing of friction brake materials and their additives, Oak Ridge national laboratory report no.19, Tenessee: US Department of Energy.10.2172/788356
  15. 15. Blau P. J. (2014), The use and misuse of the pin-on-disk wear test, in: Proc. STLE Annual Meeting, Florida.
  16. 16. Blau P. J., McLaughlin J. C. (2003), Effect of water films and sliding speed on the frictional behavior of truck disc brake materials, International journal of Tribology, Vol. 36, 709–715.10.1016/S0301-679X(03)00026-4
  17. 17. Borawski A. (2016), Suggested research method for testing selected tribological properties of friction components in vehicle braking systems, Acta Mechanica et Automatica, Vol. 10, No. 3, 223–226.10.1515/ama-2016-0034
  18. 18. Borawski A. (2018a), Simulation study of the process of friction in the working elements of a car braking system at different degrees of wear, Acta Mechanica et Automatica, Vol.12, No. 3, 221–226.10.2478/ama-2018-0034
  19. 19. Borawski A. (2018b), Simulation studies of passenger car brake system elements heating process under various braking parameters, Proceedings of 23nd International Conference MECHANIKA-2018, 58–61.
  20. 20. Borawski A., Tarasiuk W. (2018),Comparative Analysis of Protective Coatings of Car Paints, Proceedings of Scientific Automotive Conference: KONMOT-2018, 1–7.10.1088/1757-899X/421/3/032004
  21. 21. Bouchetara M., Belhocine A. (2014), Thermoelastic Analysis of Disk Brakes Rotor, American Journal of Mechanical Engineering, Vol. 2, No. 4, 103–113.10.12691/ajme-2-4-2
  22. 22. Cai P., Wang Y., Wang T., Wang Q. (2015), Effect of resins on thermal, mechanical and tribological properties of friction materials. Tribology International, Vol. 87, 1–10.10.1016/j.triboint.2015.02.007
  23. 23. Česnavičius R., Kilikevičius S., Krasauskas P., Dundulis R., Olišauska H. (2016), Research of the friction stir welding process of aluminium alloys, Mechanika, Vol. 22, No. 4, 291–296.10.5755/j01.mech.22.4.16167
  24. 24. Chmiel A. (2008), Finite element simulation methods for dry sliding wear (Ph.D. thesis), Department Of The Air Force, Air University, Air Force Institute of Technology.
  25. 25. Cozza R. C. (2014), Influence of the normal force, abrasive slurry concentration and abrasive wear modes on the coefficient of friction in ball-cratering wear tests, Tribology International, Vol. 70, 52–62.10.1016/j.triboint.2013.09.010
  26. 26. Cozza R. C., Tanaka D. K., Souza R. M. (2009), Friction coefficient and abrasive wear modes in ball-cratering tests conducted at constant normal force and contact pressure - Preliminary results, Wear, Vol. 267, No. 1–4, 61–70.10.1016/j.wear.2009.01.055
  27. 27. Czaban J., Szpica D. (2013), Drive test system to be used on roller dynamometer, Mechanika, Vol. 19, No. 5, 600–605.10.5755/j01.mech.19.5.5542
  28. 28. Dakhil M. H., Rai A. K., Reedy R., Jabbar A. A. (2014), Structural Design and Analysis of Disc brake in Automobiles, International Journal of Mechanical and Production Engineering Research and Development, Vol. 4, No. 1, 95–112.
  29. 29. Dumbleton J. H. (1981), Tribology of Natural and Artificial Joints, Chapter 7: Friction and Wear of Materials on Laboratory Testing Machines, Elsevier, 183–257.10.1016/S0167-8922(08)71015-0
  30. 30. Dundulis R., Krasauskas P., Kilikevičius S. (2012), Modelling and simulation of strength and damping of the support pillar welded by longitudinal weld, Mechanika, Vol.18, No. 2, 135–140.10.5755/j01.mech.18.2.1575
  31. 31. Dwivedi D. K., Sharma A., Rajan T. V. (2002), Interface Temperature under Dry Sliding Conditions, Materials Transactions, Vol. 43, No. 9, 2256–2261.10.2320/matertrans.43.2256
  32. 32. Elakhame Z. U., Olotu O. O., Abiodun Y. O., Akubueze E. U., Akinsanya O. O., Kaffo P. O., Oladele O. E. (2017), Production of Asbestos Free Brake Pad Using Periwinkle Shell as Filler Material, International Journal of Scientific & Engineering Research, Vol. 8, No. 6, 1728–1735.
  33. 33. Eriksson M., Bergman F., Jacobson S. (2002), On the nature of tribological contact in automotive brakes, Wear, Vol. 252, 26–36.10.1016/S0043-1648(01)00849-3
  34. 34. Fildes J. M., Mayers S. J., Kilaparti R., Schlepp E. (2012), Improved ball crater micro-abrasion test based on a ball on three disc configuration, Wear, Vol. 274–275, 414–422.10.1016/j.wear.2011.11.003
  35. 35. Gee M. G., Gant A., Hutchings I., Bethke R., Schiffman K., Van Acker K., Poulat S., Gachon Y., Stebut J. (2003), Progress towards standardisation of ball catering, Wear, Vol. 255, No. 1–6, 1–13.10.1016/S0043-1648(03)00091-7
  36. 36. Geromel N. (2014), Modelling and control of the braking system of the electric Polaris Ranger all-terrain-vehicle (Master’s thesis), University of Padova.
  37. 37. Gopal P., Dharani L. R., Frank D. B. (1994), Fade and wear characteristics of a glass fiber reinforced phenolic friction materials, Wear, Vol. 174, 119–127.10.1016/0043-1648(94)90093-0
  38. 38. Grochowicz J., Agudelo C., Li S., Abendroth H. (2014), Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing, SAE Int. J. Passeng. Cars - Mech. Syst., Vol. 7, No. 4, 1345–1360.10.4271/2014-01-2521
  39. 39. Grzes P. (2017), Determination of the maximum temperature at single braking from the FE solution of heat dynamics of friction and wear system of equations, Numerical Heat Transfer. Part A-Applications, Vol. 71, No. 7, 737–753.10.1080/10407782.2017.1308711
  40. 40. Hagino H., Oyama M., Sasaki S. (2016), Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles, Atmospheric Environment, Vol. 131, 269–278.10.1016/j.atmosenv.2016.02.014
  41. 41. Hoehn B. R., Oster P., Tobie T., Michaelis K. (2008), Test Methods For Gear, Lubricants, Vol. 42, No. 2, 141–152.
  42. 42. Hussein M. A., Mohammed A. S., Al-Aqeeli N. (2015), Wear Characteristics of Metallic Biomaterials: A Review, Materials, Vol. 8, 2749–2768.10.3390/ma8052749
  43. 43. Kaleli H. (2016), New Universal Tribometer as Pin or Ball-on-Disc and Reciprocating Pin-on-Plate Types, Tribology in Industry, Vol. 38, No. 2, 235–240.
  44. 44. Kamiński Z. (2017), A simplified lumped parameter model for pneumatic tubes, Mathematical and Computer Modelling of Dynamical Systems, Vol. 23, No. 5, 523–535.10.1080/13873954.2017.1280512
  45. 45. Kamiński Z., Kulikowski K. (2017), Measurement and evaluation of the quality of static characteristics of brake valves for agricultural trailers, Measurement, Vol. 106, 173–178.10.1016/j.measurement.2017.04.044
  46. 46. Khot S., Borah U. (2015), Finite Element Analysis of Pin-on-Disc Tribology Test, International Journal of Science and Research, Vol. 4, No. 4, 1475–1480.
  47. 47. Kilikevičius S., Česnavičius R., Krasauskas P., Dundulis R., Jaloveckas J. (2016), Experimental investigation and numerical simulation of the friction stir spot welding process, Mechanika, Vol. 22, No. 1, 59–64.10.5755/j01.mech.22.1.14243
  48. 48. Kucera M., Prsan J. (2008), Tribologic Properties of Selected Materials, Technical Sciences, Vol. 11, 228–241.10.2478/v10022-008-0016-x
  49. 49. Kulikowski K., Szpica D. (2014), Determination of directional stiffnesses of vehicels’tires under a static load operation, Maintenance and Reliability, Vol. 16, No. 1, 66–72.
  50. 50. Li S., Kahraman A., Anderson N., Wedeven L. D. (2013), A model to predict scuffing failures of a ball-on-disk contact, Tribology International, Vol. 60, 233–245.10.1016/j.triboint.2012.11.007
  51. 51. Li X., Olofsson U., Bergseth E. (2016), Pin-on-Disc Study of Tribological Performance of Standard and Sintered Gear Materials Treated with Triboconditioning Process: Pre-treatment by Pressure-induced Tribo-film formation, Tribology Transactions, Vol. 60, No. 1, 1–43.10.1080/10402004.2016.1146379
  52. 52. Maluf O., Angeloni M., Milan M.T. (2007), Development of materials for automotive disc brakes, Minerva, Vol. 4, No. 2, 149–158.
  53. 53. Matejka V., Lu Y., Matejkova P., Smetana B., Kukutschova J., Vaculík M. (2011), Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings, Applied Surface Science, Vol. 258, No. 5, 1862–1868.10.1016/j.apsusc.2011.10.063
  54. 54. Matejka V., Metinoz I., Wahlstrom J., Alemani M., Perricone G. (2017), On the running-in of brake pads and discs for dyno bench tests, Tribology International, Vol. 115, 424–431.10.1016/j.triboint.2017.06.008
  55. 55. Mergler Y. J., Huis’t Veld H. (2003), Micro abrasive wear of semi-crystalline polymers, Tribology Series, Vol. 41, 165–173.10.1016/S0167-8922(03)80129-3
  56. 56. Mieczkowski G., Molski K., Seweryn A. (2007) Finite-element modeling of stresses and displacements near the tips of pointed inclusions, Materials Science, Vol. 43, No. 2, 183–194.10.1007/s11003-007-0021-4
  57. 57. Mieczkowski G. (2017), The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry, Journal of Theoretical and Applied Mechanics, Vol. 55, No. 1, 69–86.10.15632/jtam-pl.55.1.69
  58. 58. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, Vol. 21, No. 2, 301–310.10.17531/ein.2019.2.15
  59. 59. Min-Soo K. (2011), Vibration Analysis of Tread Brake Block in the Brake Dynamometer for the High Speed Train, International Journal Of Systems Applications, Engineering & Development, Vol. 5, No. 1, 1–8.
  60. 60. Min-Soo K., Jeong-Guk K., Byeong-Choon G., Nam-Po K. (2010), Comparative studies of the tread brake dynamometer between dry and wet conditions, Selected Topics In System Science And Simulation In Engineering, in: Proc. 9th WSEAS international conference on System science and simulation in engineering.
  61. 61. Nagesh S. N., Siddaraju C., Prakash S. V. (2014), Characterization of brake pads by variation in composition of friction materials, Procedia Materials Science, Vol. 5, 295–302.10.1016/j.mspro.2014.07.270
  62. 62. Nair R. P., Griffin D., Randall N. X. (2009), The use of the pin-on-disk tribology test method to study three unique industrial applications, Wear, Vol. 267, 823–827.10.1016/j.wear.2009.02.026
  63. 63. Nicholson G. (1995), Facts about friction: 100 years of brake linings and clutch facings: 2nd edition, Croydon PA: P&W Price Enterprises Inc.
  64. 64. Nosko O., Alemani M., Olofsson U. (2017), Characterisation of airborne particles emitted from car brake materials, in: Proc. 6th World Tribology Congress, September 17–22,Beijing, China.
  65. 65. Nuraliza N., Syahrullail S., Faizal M. H. (2016), Tribological properties of aluminum lubricated with palm olein at different load using pin-on-disk machine, Jurnal Tribologi, Vol. 9, 45–59.
  66. 66. Osuch-Słomka E. (2011), Proposed method for determining the values of tests for the ball-cratering metod, Tribologia, Vol. 240, 161–171.
  67. 67. Osuch-Słomka E. (2012), Abrasive Wear Testing Of Antiwear Coatings By Ball-Cratering-Method, Tribologia, Vol. 2, 59–68.
  68. 68. Osuch-Słomka E., Ruta R., Słomka Z. (2013), The use of a modern method of designing experiments in ball-cratering abrasive wear testing, Journal of Engineering Tribology, Vol. 227, 1177–1187.10.1177/1350650113479074
  69. 69. Patel S. K., Jain A. K. (2014), Experimental study of brake lining materials with different manufacturing parameters, International Journal of Engineering Trends and Technology, Vol. 7, No. 4, 192–197.10.14445/22315381/IJETT-V7P273
  70. 70. Pauschitz A., Jech M., Ebrecht J., Lebersorger T. (2005), Investigation of Influence of Inclination on Friction and Wear Mechanisms in Piston Ring Cylinder Liner Contact With the New SRV® 4 Test Rig, in: Proc. World Tribology Congress III.10.1115/WTC2005-63520
  71. 71. Pérez A. T., Fatjó G. G., Hadfield M., Austen S. (2011), Model of friction for a pin-on-disc configuration with imposed pin rotation, Mechanism and Machine Theory, Vol. 46, 1755–1772.10.1016/j.mechmachtheory.2011.06.002
  72. 72. Placha D., Vaculík M., Mikeska M., Dutko O., Peikertova P., Kukutschova J. (2017), Release of volatile organic compounds by oxidative wear of automotive friction materials, Wear, Vol. 376–377, 705–716.10.1016/j.wear.2016.12.016
  73. 73. Polajnar M., Kalin M., Thorbjornsson I., Thorgrimsson J. T., Valle N., Botor-Probierz A. (2017), Friction and wear performance of functionally graded ductile iron for brake pads, Wear, Vol. 382–383, 85–94.10.1016/j.wear.2017.04.015
  74. 74. Priyana M. S., Hariharan P. (2014), Abrasive Wear Modes in Ball-Cratering Test Conducted on Fe73Si15Ni10Cr2 Alloy Deposited Specimen, Tribology in Industry, Vol. 36, No. 1, 97–106.
  75. 75. Puławski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, Vol. 21, No. 6, 501–506.10.5755/j01.mech.21.6.11147
  76. 76. Ramesh B. T., Arun K. M., Swamy R. P. (2015), Dry Sliding Wear Test Conducted On Pin-On-Disk Testing Setup For Al6061-Sic Metal Matrix Composites Fabricated By Powder Metallurgy, International Journal of Innovative Science, Engineering & Technology, Vol. 2, No. 6, 264–270.
  77. 77. Rashid A., Strömberg N. (2013), Thermomechanical simulation of wear and hot bands in a disc brake by adopting an eulerian approach, in: Proc. EuroBrake2013.
  78. 78. Richard D. L. (2004), Using infrared technology to detect hot or defective brakes on trucks, Colorado Department of Transportation, in: Report No. CDOT-DTD-R-2004-15.
  79. 79. Rowe K. G., Bennett A. I., Krick B. A., Sawyer W. G. (2013),In situ thermal measurements of sliding contacts, Tribology International, Vol. 62, 208–214.10.1016/j.triboint.2013.02.028
  80. 80. Sarkar C., Hirani H. (2015), Frictional Characteristics of Brake Pads using Inertia Brake Dynamometer, International Journal of Current Engineering and Technology, Vol. 5, No. 2, 981–989.
  81. 81. Schmidt D. L., Davidson K. E., Theibert L. S. (1999), Unique applications of carbon/carbon composite materials, part 1, Sampe Journal, Vol. 35, No. 3, 27–39.
  82. 82. Ścieszka S. F. (1998), Friction brakes – material, structural and tribological problems, ITE, Radom.
  83. 83. Shipway P. H., Hogg J. J. (2007), Wear of bulk ceramics in micro-scale abrasion—The role of abrasive shape and hardness and its relevance to testing of ceramic coatings, Wear, Vol. 263, No. 7–12, 887–895.10.1016/j.wear.2006.11.028
  84. 84. Sikder A. K. (2014), Tribo-testing Applications in Automotive and Effective Characterization of the Tribo-tests, Bruker Nano Surfaces Division, Bangalore.
  85. 85. Söderberg A., Andersson S. (2009), Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software, Wear, Vol. 267, 2243–2251.10.1016/j.wear.2009.09.004
  86. 86. Stachowiak G. W., Batchelor A. W., Stachowiak G. B. (2004), Experimental Methods in Tribology, first ed., Elsevier, Amsterdam.
  87. 87. Sugözü B., Dağhan B. (2016), Effect of BaSO4 on Tribological Properties of Brake Friction Materials, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, No. 12, 30–35.
  88. 88. Surojo E., Jamasri, Malau V., Ilman M. N. (2015), Investigation of friction behaviors of brake shoe materials using metallic filter, Tribology in industry, Vol. 37, No. 4, 473–481.
  89. 89. Szpica D. (2015a), Characteristics of motion reserve of passenger vehicle engines, in: Proceedings of the 19th International Scientific Conference Transport Means, October 22–23, 2015, Kaunas University of Technology, Lithuania.
  90. 90. Szpica D. (2015b), Simplified numerical simulation as the base for throttle flow characteristics designation, Mechanika, Vol. 21, No. 2, 129–133.10.5755/j01.mech.21.2.8850
  91. 91. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Natural Gas Science and Engineering, Vol. 34, 1127–1136.10.1016/j.jngse.2016.08.014
  92. 92. Szpica D. (2018), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport,Vol. 33, No. 1, 186–196.10.3846/16484142.2016.1149884
  93. 93. Talati F., Jalalifar S. (2009), Analysis of heat conduction in a disk brake system, Heat Mass Transfer, Vol. 45, 1047–1059.10.1007/s00231-009-0476-y
  94. 94. Tamboli K., Sheth S. (2008), An Overview Of Some Experimental Methods In Tribology, in: Proc. National Conference on “Emerging Trends in Mechanical Engineering” (ETME-2008).
  95. 95. Telang A., Rehman A., Dixit G., Das S. (2010), Effect of reinforcement and heat treatment on the friction performance of Al Si alloy and brake pad pair, Archives of Applied Science Research, Vol. 2, No. 4, 95–102.
  96. 96. Trzos M. (2010), The Analysis Of Tribotester Influence On Friction Coefficient Estimation, Tribologia, Vol. 6, 123–135.
  97. 97. Tsang P. H. S., Jacko M. G., Rhee S. K. (1985), Comparison of Chase and inertial brake Dynamometer testing of automotive friction material, Wear, Vol. 103, No. 3, 217–232.10.1016/0043-1648(85)90012-2
  98. 98. Uyyuru R. K., Surappa M. K., Brusethaug S. (2007), Tribological behavior of Al–Si–SiC p composites/automobile brake pad system under dry sliding conditions, Tribology International, Vol. 40, No. 2, 365–373.10.1016/j.triboint.2005.10.012
  99. 99. Varinauskas V., Diliūnas S., Kubilius M., Kubilius R. (2013), Influence of cantilever length on stress distribution in fixation screws of All - on - 4 full - arch bridge, Mechanika, Vol. 19, No. 3, 260–263.10.5755/j01.mech.19.3.3614
  100. 100. Walliman N. (2010), Research Methods: The Basics, Routledge, London.10.4324/9780203836071
  101. 101. Wu B. D., Ma J. J., Liu X. Y., Sun J. Y. (2009), Comparison Research on Inertia Simulation in Brake Dynamometer Test, in: Proc. Materials Science Forum.
  102. 102. Yan W., O’Dowd N. P., Busso E. P. (2002), Numerical study of sliding wear caused by a loaded pin on a rotating disc, Journal of the Mechanics and Physics of Solids, Vol. 50, 449–470.10.1016/S0022-5096(01)00093-X
  103. 103. Yevtushenko A. A. (2014), Analytical and numerical modeling of transient process of heat generation in the elements of friction braking systems: in Polish, Oficyna Wydawnicza Politechniki Białostockiej, Bialystok.
  104. 104. Yevtushenko A. A., Grześ P. (2015a), 3D FE model of frictional heating and wear with a mutual influence of the sliding velocity and temperature in a disc brake, International Communications in Heat and Mass Transfer, Vol. 62, 37–44.10.1016/j.icheatmasstransfer.2015.01.005
  105. 105. Yevtushenko A. A., Grześ P. (2015b), Maximum temperature in a three-disc thermally nonlinear braking system, International Communications in Heat and Mass Transfer, Vol. 68, 291–298.10.1016/j.icheatmasstransfer.2015.09.010
  106. 106. Yevtushenko A. A., Grześ P. (2016), Mutual influence of the sliding velocity and temperature in frictional heating of the thermally nonlinear disc brake, International Journal of Thermal Science, Vol. 102, 254–262.10.1016/j.ijthermalsci.2015.11.021
  107. 107. Yevtushenko A. A., Kuciej M., Grześ P., Wasilewski P. (2017), Temperature in the railway disc brake at a repetetive short-term mode of braking, International Communications in Heat and Mass Transfer, Vol. 84, 102–109.10.1016/j.icheatmasstransfer.2017.04.007
  108. 108. Zdravecká E., Ondáč M., Tkáčová J. (2013), The wear tribometer and digitalization of tribological tests data, Journal of Achivements in Materials and Manufacturing Engineering, Vol. 61, No. 2, 321–326.
  109. 109. Zmitrowicz A. (2006), Wear Patterns And Laws Of Wear - A Review, Journal Of Theoretical and Applied Mechanics, Vol. 44, No. 2, 219–253.
DOI: https://doi.org/10.2478/ama-2019-0025 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 189 - 199
Submitted on: May 10, 2019
Accepted on: Sep 30, 2019
Published on: Nov 5, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Andrzej Borawski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.