Have a personal or library account? Click to login

Comparative Study of Stabilization Controls of a Forklift Vehicle

Open Access
|Nov 2019

References

  1. 1. Abbasi W., Rehman F.U., Shah I., Rauf A. (2019), Stabilizing control algorithm for nonholonomic wheeled mobile robots using adaptive integral sliding mode, International Journal of Robotics and Automation, 34(2), 1-8.10.2316/J.2019.206-4803
  2. 2. Aicardi M., Casalino G., Bicchi A., Balestrino A. (1995), Closed loop steering of unicycle-like vehicles via Lyapunov techniques, IEEE Robotics and Automation Magazine, 2(1), 27–35.10.1109/100.388294
  3. 3. Astolfi A. (1996), Discontinuous control of nonholonomic systems, Systems Control Letters, 27, 37–45.10.1016/0167-6911(95)00041-0
  4. 4. Baranowski L.M., Siwek L.M. (2018), Use of 3D simulation to design theoretical and real pipe inspection mobile robot model, Acta Mechanica et Automatica, 12(3), 232–236.10.2478/ama-2018-0036
  5. 5. Brockett R.W. (1983), Differential geometric control theory - asymptotic stability and feedback stabilization, MA: Birkhäuser.
  6. 6. Hashimoto W., Yamashita Y., Kobayashi K. (2019), Asymptotic stabilization of nonholonomic four-wheeled vehicle with steering limitation, IEICE Transactions on Fundamental Electronics, Communications, and Computer Sciences, E102.A (1), 227–234.10.1587/transfun.E102.A.227
  7. 7. Hespanha J.P., Morse A.S. (1999), Stabilization of nonholonomic integrators via logic-based switching, Automatica, 35(3), 385–393.10.1016/S0005-1098(98)00166-6
  8. 8. Kłosiński J., Janusz J. J., Nycz R. (2015), The impact of the FLC controller’s settings on the precision of the positioning of a payload transferred by a mobile crane, Acta Mechanica et Automatica, 8(4), 181–184.10.2478/ama-2014-0032
  9. 9. Lamiraux F., Laumond J.P. (2000), Flatness and small-time controllability of multibody mobile robots: Application to motion planning, IEEE Transactions on Automatic Control, 45(10), 1878–1881.10.1109/TAC.2000.880989
  10. 10. Morin P.C., Samson C. (2009), Control of nonholonomic mobile robots based on the transverse function approach, IEEE Transactions on Robotics, 25(5), 1058–1073.10.1109/TRO.2009.2014123
  11. 11. Muralidharan V., Mahindrakar, A.D. (2014), Position stabilization and waypoint tracking control of mobile inverted pendulum robot, IEEE Transactions on Control Systems Technology, 22(6), 2360–2367.10.1109/TCST.2014.2300171
  12. 12. Murray R.M., Sastry S.S. (1993), Nonholonomic motion Planning: Steering using Sinusoids, IEEE Transactions on Automatic Control, 38(5), 700–716.10.1109/9.277235
  13. 13. Pomet J.-B., Samson C. (1994), Time-varying exponential stabilization of nonholonomic systems in power form, Proceedings of the IFAC Symposium of Robust Control Design, Rio de Janeiro, 447–452.
  14. 14. Ryu J.C., Agrawal S.K. (2010), Planning and control of under-actuated mobile manipulators using differential flatness, Autonomous Robots, 29(1), 35–52.10.1007/s10514-010-9185-0
  15. 15. S’anchez-Torres J.D., Defoort D.M., Muñoz-Vázquez A.J. (2019), Predefined-time stabilization of a class of nonholonomic systems, International Journal of Control, DOI: 10.1080/00207179.2019.1569262.10.1080/00207179.2019.1569262
  16. 16. Samson C. (1995). Control of chained systems application to path following and time-varying point stabilization of mobile robots, IEEE Transactions on Automatic Control, 40(1), 64–77.10.1109/9.362899
  17. 17. Sankaranarayanan V. Mahindrakar A.D. (2013). Configuration constrained stabilization of a wheeled mobile robot-theory and experiment, IEEE Transactions on Control Systems Technology, 21(1), 275–280.10.1109/TCST.2011.2181378
  18. 18. Siegwart R., Nourbakhsh I. R. (2004), Introduction to Autonomous Mobile Robot, Cambridge, MA: MIT Press.
  19. 19. Soueres P., Laumond J.P. (1996). Shortest paths synthesis for a car-like robot, IEEE Transactions on Automatic Control, 41(5), 672–688.10.1109/9.489204
  20. 20. Tamba T., Hong B., Hong K.-S. (2009), A path following control of an unmanned autonomous forklift. International Journal of Control, Automation, and Systems, 7(1), 113–122.10.1007/s12555-009-0114-y
  21. 21. Tang C. P., Miller P.T., Krovi V.N., Ryu J.-C., Agrawal S.K. (2008), Kinematic control of a nonholonomic wheeled mobile manipulator - a differential flatness approach, Proceedings of the ASME Dynamic Syst. Control Conference, Ann Arbor, Michigan, USA, 2008–2253.10.1115/DSCC2008-2253
  22. 22. Virgalaivan I., Lipták T., Miková, Ľ. (2018), Snake robot locomotion patterns for straight and curved pipe, Journal of Mechanical Engineering, 68(2), 91–104.10.2478/scjme-2018-0020
  23. 23. Wang Y., Miao Z., Zhong H., Pan Q. (2015), Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach, IEEE Transactions on Control Systems Technology, 23(4), 1440–1450.10.1109/TCST.2014.2375812
  24. 24. Wei S., Uthaichana K., Žefran M. DeCarlo R. (2013), Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage, IEEE Transactions on Control Systems Technology, 21(6), 2181–2193.10.1109/TCST.2012.2227964
  25. 25. Widyotriatmo A., Hong K.-S. (2008). Decision making framework for autonomous vehicle navigation, Proceedings of the SICE Annual Conference-International Conference on Instrumentation, Control and Information Technology, Tokyo, Japan, 20-22 August, 1002–1007.10.1109/SICE.2008.4654802
  26. 26. Widyotriatmo A., Hong K.-S. (2012), Switching algorithm for robust configuration control of a wheeled vehicle, Control Engineering Practice, 20(3), 315–325.10.1016/j.conengprac.2011.11.007
  27. 27. Widyotriatmo A., Hong K.-S. (2015), Configuration control of an autonomous vehicle under nonholonomic and field-of-view constraints, International Journal of Imaging and Robotics, 15(3), 126–139.
  28. 28. Xiao H., Li Z., Yang C., Zhang L., Yuan P., Ding, L., Wang T. (2017), Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization, IEEE Transactions on Industrial Electronics, 65(4), 3437–3446.
  29. 29. Xie X.-J., Li G.-J. (2019), Finite-time output-feedback stabilization of high-order nonholonomic systems, International Journal of Robust and Nonlinear Control, 29(9), 2695–2711.10.1002/rnc.4516
  30. 30. Yue M.Y., Ning M. Y., Zhao X., Zong G. (2019), Point stabilization control method for WIP vehicles based on motion planning, IEEE Transactions on Industrial Informatics, 25(6), 3368–3378.10.1109/TII.2018.2875048
DOI: https://doi.org/10.2478/ama-2019-0024 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 181 - 188
Submitted on: Jan 7, 2019
Published on: Nov 5, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Augie Widyotriatmo, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.