Have a personal or library account? Click to login

Simulation and Analysis of a Turbulent Flow Around a Three-Dimensional Obstacle

Open Access
|Nov 2019

References

  1. 1. Aliane K. (2011), Passive control of the turbulent flow over a surface mounted rectangular block obstacle and a rounded rectangular obstacle, International Review of Mechanical Engineering (IREME), 5(2), 305-314.
  2. 2. Aliane K., Sebbane O., Hadjoui A. (2003), Dynamic study of turbomachine blade cooling models, Proceedings of the 11th International Day of Thermomics, Algiers (Algeria), 315-320.
  3. 3. Amraoui M.A., Aliane K. (2018), Three-dimensional Analysis of Air Flow in a Flat Plate Solar Collector, Periodica Polytechnica Mechanical Engineering, 62(2), 126-135.10.3311/PPme.11255
  4. 4. Basnet K., Constantinescu G. (2017), The structure of turbulent flow around vertical plates containing holes and attached to a channel bed, Journal of Physics of Fluids, 29, 115101.10.1063/1.5009310
  5. 5. Becker H. Lienhart F.D. (2002), Flow around three-dimensional obstacles in boundary layers, J. Wind Eng. Ind. Aerodyn., 90, 265-279.10.1016/S0167-6105(01)00209-4
  6. 6. Bitsuamlak G., Stathopoulos T., Bedard C. (2006), Effects of upstream two-dimensional hills on design wind loads a computational approach, Wind and Structures, 9(1), 37–58.10.12989/was.2006.9.1.037
  7. 7. Diaz-Daniel C., Laizet S., Vassilicos J. (2017), Direct Numerical Simulations of a wall-attached cube immersed in laminar and turbulent boundary layers, International Journal of Heat and Fluid Flow (Preprint submitted).10.1016/j.ijheatfluidflow.2017.09.015
  8. 8. Djeddi S.R., Masoudi A., Ghadimi P. (2013), Numerical Simulation of Flow around Diamond-Shaped Obstacles at Low to Moderate Reynolds Numbers, American Journal of Applied Mathematics and Statistics, 1(1), 11-20.10.12691/ajams-1-1-3
  9. 9. Dogan S., Yagmur S., Goktepeli I, Ozgoren M. (2017), Assessment of Turbulence Models for Flow around a Surface-Mounted Cube, International Journal of Mechanical Engineering and Robotics Research, 6(3), 237-241.10.18178/ijmerr.6.3.237-241
  10. 10. Ennouri M., Kanfoudi H., Bel Hadj Taher A., Zgolli R. (2019), Numerical Flow Simulation and Cavitation Prediction in a Centrifugal Pump using an SST-SAS Turbulence Model, Journal of Applied Fluid Mechanics, 12(1), 25-39.10.29252/jafm.75.253.28771
  11. 11. Filippini G., Franck G., Nigro N. (2005), Large Eddy Simulations of the flow around a square cylinder, Mecanica Computacional, XXIV A. Larreteguy (Editor), Buenos Aires, Argentina.
  12. 12. Hadjoui A., Sebbane O., Aliane K., Azzi A. (2003), Study of the appearance of swirling zones in a flow confronted with obstacles located at the entrance of a canal, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint-Nazaire, (France), 224-229.
  13. 13. Hainesa M., Taylor I. (2018), Numerical investigation of the flow field around low rise buildings due to a downburst event using large eddy simulation, Journal of Wind Engineering & Industrial Aerodynamics, 172, 12-30.10.1016/j.jweia.2017.10.028
  14. 14. Hunt J.C.R., Wray A. A., Moin P. (1988), Eddies, stream and convergence zones in turbulent flows, Technical report, Center of Turbulence Research.
  15. 15. Hussein H.J., Martinuzzi R.J. (1996), Energy balance for the turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids, Vol. 8, No. 3, 764-780.10.1063/1.868860
  16. 16. Hwang J-Y, Yang K-S. (2010), Numerical study of vertical structures around a wall-mounted cubic obstacle in channel flow, Physics of Fluids, 16(7), 2382-2394.10.1063/1.1736675
  17. 17. Jones W.P., Launder B.E. (1972), The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 15, 301-14.10.1016/0017-9310(72)90076-2
  18. 18. Kanfoudi H., Bellakhall G., Ennouri M., Bel Hadj Taher A., Zgolli R. (2017), Numerical Analysis of the Turbulent Flow Structure Induced by the Cavitation Shedding Using LES, Journal of Applied Fluid Mechanics, 10(3), 933–46.10.18869/acadpub.jafm.73.240.27384
  19. 19. Krajnovi’c S., Davidson L. (2002), Large-eddy simulation of the flow around a bluff body, AIAA Journal, 40(5), 927-936.10.2514/2.1729
  20. 20. Liakos A., Malamataris N.A. (2014), Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube, Physics of Fluids, 26(5), 053603.10.1063/1.4876176
  21. 21. Liao B., Shan-Qun C. (2015), Experimental study of flow past obstacles by PIV, 7th International Conference on Fluid Mechanics, ICFM7, Procedia Engineering, 126, 537 – 541.10.1016/j.proeng.2015.11.300
  22. 22. Lim H.C., Thomas T.G., Castro I. P. (2009), Flow around a cube in a turbulent boundary layer: LES and experiment, Journal of Wind Engineering and Industrial Aerodynamics, 97(2), 96–109.10.1016/j.jweia.2009.01.001
  23. 23. Martinuzzi R., Tropea C. (1993), The flow around a surface-mounted prismatic obstacle placed in a fully developed channel flow, J. Fluids Eng., 115, 85-92.10.1115/1.2910118
  24. 24. Merahi.I, Abidat. M, Azzi.A, Hireche.O (2002), Numerical assessment of incidence losses in an annular blade cascade, Séminaire international de Génie Mécanique, Sigma’02 ENSET, Oran.
  25. 25. Nemdili S., Nemdili F., Azzi A. (2015), Improving cooling effecti veness by use of chamfers on the top of electronic components, Microelectronics Reliability, 55(7), 1067-1076.10.1016/j.microrel.2015.04.006
  26. 26. Rostane B., Aliane K. (2015), Three Dimensional Simulation for Turbulent Flow Around Prismatic Obstacle with Rounded Downstream Edge Using the k-ω SST Model, International Review of Mechanical Engineering (I.RE.M.E.), 9(3), 266.277.10.15866/ireme.v9i3.5719
  27. 27. Sari-Hassoun Z., Aliane K.. (2016), Numerical simulation of turbulent flow around obstacles with a curved upstream edge, International Journal of Scientific Research & Engineering Technology (IJSET), 196-201.
  28. 28. Sebbane O., Hadjoui A., Aliane K., Azzi A. (2003), New method of visualization of flows with very large Reynolds number, Proceedings of the 9th Congress of the French Society of Process Engineering, Saint -Nazaire, France, 259-264.
  29. 29. Shinde S., Johnseny E., Makiz K. (2017), Understanding the effect of cube size on the near wake characteristics in a turbulent boundary layer, 47th AIAA Fluid Dynamics Conference, Denver, Colorado.10.2514/6.2017-3640
  30. 30. Sumner D., Rostamy N., Bergstrom D., Bugg J. (2015), Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder, International Journal of Heat and Fluid Flow, 56, 290-304.10.1016/j.ijheatfluidflow.2015.08.005
  31. 31. Sumner D., Rostamy N., Bergstrom D., Bugg J.D. (2017), Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism, International Journal of Heat and Fluid Flow, 65, 1-20.10.1016/j.ijheatfluidflow.2017.02.004
  32. 32. Vinuesa R., Schlatter P., Malm J., Mavriplis C., Henningson, D.S. (2015), Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions, Journal of Turbulence, 16, 555-587.10.1080/14685248.2014.989232
  33. 33. Yakhot A., Liu H., Nikitin N. (2006), Turbulent flow around a wall-mounted cube: A direct numerical simulation, International Journal of Heat and Fluid Flow, 27(6), 994-1009.10.1016/j.ijheatfluidflow.2006.02.026
DOI: https://doi.org/10.2478/ama-2019-0023 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 173 - 180
Submitted on: Mar 14, 2019
Published on: Nov 5, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Lamia Benahmed, Khaled Aliane, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.