Have a personal or library account? Click to login

Non-Linear Analysis of Air Pressure Fluctuations During Bubble Departure Synchronisation

Open Access
|Nov 2019

References

  1. 1. Dzienis P., Mosdorf R. (2014), Stability of periodic bubble departures at a low frequency, Chemical Engineering Science,109, 171-182.10.1016/j.ces.2014.02.001
  2. 2. Femat R., Ramirez J.A., Soria A. (1998), Chaotic flow structure in a vertical bubble column, Physics Letters A,248 (1), 67–79.10.1016/S0375-9601(98)00506-4
  3. 3. Grassberger P., and Procaccia I. (1983), Measuring the strangeness of strange attractors, Physica - D,9, 189–208.10.1016/0167-2789(83)90298-1
  4. 4. Kazakis N.A., Mouza A.A., Paras S.V. (2008), Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale, Chemical Engineering Science,63, 5160–517810.1016/j.ces.2008.07.006
  5. 5. Lavensona D.M., Kelkara A.V., Daniel A. B., Mohammad S.A., Koubab G., Aicheleb C.P. (2016), Gas evolution rates – A critical uncertainty in challenged gas-liquid separations, Journal of Petroleum Science and Engineering, 147, 816-82810.1016/j.petrol.2016.10.005
  6. 6. Legendre D., Magnaudet J., Mougin G. (2003), Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Journal of Fluid Mechanics,497, 133–166.10.1017/S0022112003006463
  7. 7. Marwan N.(2019), Cross Recurrence Plot Toolbox for Matlab, Ver. 5.15, Release 28.10, http://tocsy.pik-potsdam.de.
  8. 8. Marwan N., Romano M. C., Thiel M., Kurths J. (2007),Recurrence Plots for the Analysis of Complex Systems, Physics Reports, 438, 237 – 329.10.1016/j.physrep.2006.11.001
  9. 9. Mosdorf R., Dzienis P., Litak G. (2017), The loss of synchronization between air pressure fluctuations and liquid flow inside the nozzle during the chaotic bubble departures, Meccanica, 52, 2641–265410.1007/s11012-016-0597-6
  10. 10. Mosdorf R., Wyszkowski T. (2011), Experimental investigations of deterministic chaos appearance in bubbling flow, International Journal of Heat and Mass Transfer, 54, 5060–5069.10.1016/j.ijheatmasstransfer.2011.07.023
  11. 11. Mosdorf R., Wyszkowski T. (2013), Self-organising structure of bubbles departures, International Journal of Heat and Mass Transfer, 61, 277–286.10.1016/j.ijheatmasstransfer.2013.02.008
  12. 12. Sanada T., Sato A., Shirota M.T., Watanabe M. (2009), Motion and coalescence of a pair of bubbles rising side by side, Chemical Engineering Science, 64, 2659-2671.10.1016/j.ces.2009.02.042
  13. 13. Schuster H.G. (1993), Deterministic Chaos. An Introduction, PWN, Warszawa (in Polish).10.1007/978-3-642-95650-8_2
  14. 14. Snabre P., Magnifotcham F. (1997), Formation and rise of a bubble stream in viscous liquid, European Physical Journal B, 4, 369-377.10.1007/s100510050392
  15. 15. Torrence C., Compo G. P. (1998), A practical guide to wavelet analysis, Bulletin of the American Meteorological Society,79, 61-78.10.1175/1520-0477(1998)079<;0061:APGTWA>2.0.CO;2
  16. 16. Vazquez A., Leifer I., Sanchez R.M. (2010), Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65, 4046–4054.10.1016/j.ces.2010.03.041
  17. 17. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. (1985), Determining Lyapunov Exponent from a Time series, Physica-D, 16, 285–317.10.1016/0167-2789(85)90011-9
DOI: https://doi.org/10.2478/ama-2019-0021 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 158 - 165
Submitted on: May 27, 2019
Accepted on: Sep 10, 2019
Published on: Nov 5, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Paweł Dzienis, Romuald Mosdorf, Tomasz Wyszkowski, Gabriela Rafałko, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.