Have a personal or library account? Click to login

Analysis of the Influence of Magnetic Induction Ramp Profile on Axial Force and Friction Torque Generated by MR Fluid

Open Access
|Nov 2019

References

  1. 1. Ajay Kumar H. N., Shilpashree D. J., Adarsh M. S., Amith D., Kulkarni S. (2016), Development of Smart Squeeze Film Dampers for Small Rotors, Procedia Engineering, 144, 790-800,10.1016/j.proeng.2016.05.088
  2. 2. Bajkowski J.M. (2012), Design, analysis and performance evaluation of the linear, magnetorheological damper, Acta Mechanica et Automatica, 6(1), 5-9.
  3. 3. Chen S., Huang J., Shu H., Sun T., Jian K., (2013) Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid, Advances in Materials Science and Engineering, 2013, 1-6.10.1155/2013/290691
  4. 4. Gong X., Guo, Ch., Xuan Sh., Liu T., Zong L., Peng Ch. (2012), Oscillatory normal forces of magnetorheological fluids, Soft Matter, 8(19), 5256-5261,10.1039/c2sm25341k
  5. 5. Guldbakke J. M., Hesselbach J. (2006), Development of bearings and a damper based on magnetically controllable fluids, Journal of Physics, 18, 2959.10.1088/0953-8984/18/38/S29
  6. 6. Guo Ch.Y., Gong X.L. (2012,) Normal forces of magnetorheological fluids under oscillatory shear, Journal of Magnetism and Magnetic Materials, 324(6), 1218-1224.10.1016/j.jmmm.2011.11.013
  7. 7. Hegger C. and Maas J. (2016) Investigation of the squeeze strengthening effect in shear mode, J. Intell. Mater. Syst. Struct., 27 1895–907.10.1177/1045389X15606998
  8. 8. Horak W., Salwiński J., Szczęch M. (2017a), Analysis of the influence of selected factors on the capacity of thrust sliding bearings lubricated with magnetic fluids, Tribologia, 48(4), 33–38.10.5604/01.3001.0010.5988
  9. 9. Horak W., Salwiński J., Szczęch M. (2017b), Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates, Machine Dynamics Research, 41(1), 89-100.
  10. 10. Horak W., Salwiński J., Szczęch M. (2017c), Test stand for the examination of magnetic fluids in shear and squeeze flow mode, Tribologia, 48(2), 67–75.10.5604/01.3001.0010.6290
  11. 11. Jang K.I., Min B.K., Seok J. (2011), A behavior model of a magnetorheological fluid in direct shear mode, Journal of Magnetism and Magnetic Materials, 323(10), 1324-1329.10.1016/j.jmmm.2010.11.039
  12. 12. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Magnetorheological Shock Absorber, Acta Mechanica et Automatica, 11(4), 253-259.10.1515/ama-2017-0039
  13. 13. Klingenberg D.J., Ulicny J.C., Golden M.A. (2007), Mason numbers for magnetorheology, Journal of Rheology, 51(5), 883–893;10.1122/1.2764089
  14. 14. Kubík M., Macháček O., Strecker Z., Roupec J., Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structure, 26 047002.10.1088/1361-665X/aa6066
  15. 15. Laun H. M., Schmidt G., Gabriel C., Kieburg C., (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta, 47(9), 1049-1059.10.1007/s00397-008-0305-0
  16. 16. Li W., Zhang X. (2008), The effect of friction on magnetorheological fluids, Korea-Aust. Rheol. J., 20, 45–50.
  17. 17. López-López M.T., Kuzhir P., Durań J.D.G, Bossis G. (2010), Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, Journal of Rheology, 5(5), 1119-113610.1122/1.3479043
  18. 18. Odenbach S., Pop L.M., Zubarev A.Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitt, 1, 195-204.10.1002/gamm.200790008
  19. 19. Raj K., Moskowitz B., Casciari R. (1995), Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials, 149, 174-180.10.1016/0304-8853(95)00365-7
  20. 20. Rosensweig R.E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.
  21. 21. Salwiński J., Horak W. (2011), Measurement of normal force in magnetorheological and ferrofluid lubricated bearings, Key Engineering Materials, 490, 25-32.10.4028/www.scientific.net/KEM.490.25
  22. 22. See H., Tanner R. (2003), Shear rate dependence of the normal force of a magnetorheological suspension, Rheologica Acta, 42(1-2),166-170.10.1007/s00397-002-0268-5
  23. 23. Shan L., Chen K., Zhou M., Zhang X., Meng Y., Tian Y. (2015), Shear history effect of magnetorheological fluids, Smart Materials and Structures, 24(10), 105030.10.1088/0964-1726/24/10/105030
  24. 24. Szczęch M., Horak W. (2017), Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals, IEEE Transactions on Magnetics, 53(7), 1–5.10.1109/TMAG.2017.2672922
  25. 25. Vekas L. (2008), Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology, 54, 127-136.10.4028/3-908158-11-7.127
  26. 26. Wang Y., Yin S., Huang H., (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43, 93–104.10.1016/j.precisioneng.2015.06.014
DOI: https://doi.org/10.2478/ama-2019-0020 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 153 - 157
Submitted on: Jul 21, 2019
Accepted on: Jul 15, 2019
Published on: Nov 5, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Wojciech Horak, Marcin Szczęch, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.