1. Ajay Kumar H. N., Shilpashree D. J., Adarsh M. S., Amith D., Kulkarni S. (2016), Development of Smart Squeeze Film Dampers for Small Rotors, Procedia Engineering, 144, 790-800,10.1016/j.proeng.2016.05.088
2. Bajkowski J.M. (2012), Design, analysis and performance evaluation of the linear, magnetorheological damper, Acta Mechanica et Automatica, 6(1), 5-9.
3. Chen S., Huang J., Shu H., Sun T., Jian K., (2013) Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid, Advances in Materials Science and Engineering, 2013, 1-6.10.1155/2013/290691
4. Gong X., Guo, Ch., Xuan Sh., Liu T., Zong L., Peng Ch. (2012), Oscillatory normal forces of magnetorheological fluids, Soft Matter, 8(19), 5256-5261,10.1039/c2sm25341k
5. Guldbakke J. M., Hesselbach J. (2006), Development of bearings and a damper based on magnetically controllable fluids, Journal of Physics, 18, 2959.10.1088/0953-8984/18/38/S29
6. Guo Ch.Y., Gong X.L. (2012,) Normal forces of magnetorheological fluids under oscillatory shear, Journal of Magnetism and Magnetic Materials, 324(6), 1218-1224.10.1016/j.jmmm.2011.11.013
7. Hegger C. and Maas J. (2016) Investigation of the squeeze strengthening effect in shear mode, J. Intell. Mater. Syst. Struct., 27 1895–907.10.1177/1045389X15606998
8. Horak W., Salwiński J., Szczęch M. (2017a), Analysis of the influence of selected factors on the capacity of thrust sliding bearings lubricated with magnetic fluids, Tribologia, 48(4), 33–38.10.5604/01.3001.0010.5988
9. Horak W., Salwiński J., Szczęch M. (2017b), Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates, Machine Dynamics Research, 41(1), 89-100.
10. Horak W., Salwiński J., Szczęch M. (2017c), Test stand for the examination of magnetic fluids in shear and squeeze flow mode, Tribologia, 48(2), 67–75.10.5604/01.3001.0010.6290
11. Jang K.I., Min B.K., Seok J. (2011), A behavior model of a magnetorheological fluid in direct shear mode, Journal of Magnetism and Magnetic Materials, 323(10), 1324-1329.10.1016/j.jmmm.2010.11.039
12. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Magnetorheological Shock Absorber, Acta Mechanica et Automatica, 11(4), 253-259.10.1515/ama-2017-0039
14. Kubík M., Macháček O., Strecker Z., Roupec J., Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structure, 26 047002.10.1088/1361-665X/aa6066
15. Laun H. M., Schmidt G., Gabriel C., Kieburg C., (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta, 47(9), 1049-1059.10.1007/s00397-008-0305-0
17. López-López M.T., Kuzhir P., Durań J.D.G, Bossis G. (2010), Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, Journal of Rheology, 5(5), 1119-113610.1122/1.3479043
18. Odenbach S., Pop L.M., Zubarev A.Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitt, 1, 195-204.10.1002/gamm.200790008
19. Raj K., Moskowitz B., Casciari R. (1995), Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials, 149, 174-180.10.1016/0304-8853(95)00365-7
21. Salwiński J., Horak W. (2011), Measurement of normal force in magnetorheological and ferrofluid lubricated bearings, Key Engineering Materials, 490, 25-32.10.4028/www.scientific.net/KEM.490.25
22. See H., Tanner R. (2003), Shear rate dependence of the normal force of a magnetorheological suspension, Rheologica Acta, 42(1-2),166-170.10.1007/s00397-002-0268-5
23. Shan L., Chen K., Zhou M., Zhang X., Meng Y., Tian Y. (2015), Shear history effect of magnetorheological fluids, Smart Materials and Structures, 24(10), 105030.10.1088/0964-1726/24/10/105030
24. Szczęch M., Horak W. (2017), Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals, IEEE Transactions on Magnetics, 53(7), 1–5.10.1109/TMAG.2017.2672922
26. Wang Y., Yin S., Huang H., (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43, 93–104.10.1016/j.precisioneng.2015.06.014