Have a personal or library account? Click to login
Ability of Energy Harvesting Mr Damper to Act as a Velocity Sensor in Vibration Control Systems Cover

Ability of Energy Harvesting Mr Damper to Act as a Velocity Sensor in Vibration Control Systems

Open Access
|Jul 2019

References

  1. 1. Ahamed R., Ferdaus M.M., Li Y. (2016), Advancement in energy harvesting magneto-rheological fluid damper: A review, Korea-Australia Rheology Journal, 28(4), 355–379.10.1007/s13367-016-0035-2
  2. 2. Ahamed R., Rashid M.M., Ferdaus M.M., Yusuf H.B. (2017), Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper, Journal of Low Frequency Noise Vibration and Active Control, 36(2), 177–192.10.1177/0263092317711993
  3. 3. Chen C., Liao W.H. (2012), A self-sensing magnetorheological damper with power generation, Smart Materials and Structures, 21 025014.10.1088/0964-1726/21/2/025014
  4. 4. Chen Z. H., Ni Y.Q., Or S.W. (2015), Characterization and modeling of a self-sensing MR damper under harmonic loading, Smart Structures and Systems, 15, 1103–1120.10.12989/sss.2015.15.4.1103
  5. 5. Choi Y.T., Werely N.M. (2009), Self-powered magnetorhelogical dampers, Journal of Vibration Acoustics, 131, 044501.10.1115/1.3142882
  6. 6. Frigo M., Johnson S.G. (2005), The Design and Implementation of FFTW3, Proceedings of the IEEE, 93 (2), 216–231. Invited paper, Special Isue on Pro-gram Generation, Optimization, and Platform Adaptation, http://www.fftw.org/fftw-paper-ieee.pdf.10.1109/JPROC.2004.840301
  7. 7. Hu G., Lu Y., Sun S., Li W. (2017), Development of a self-sensing magnetorheological damper with magnets in-line coil mechanism, Sensors and Actuators A: Physical, 255, 71–78.10.1016/j.sna.2017.01.002
  8. 8. Jung H.J., Jang D.D., Lee H.J., Lee I.W., Cho S.W. (2010a), Feasibility Test of Adaptive Passive Control System Using MR Fluid Damper with Electromagnetic Induction Part, Journal Engineering Mechanics, 136(2), 254–259.10.1061/(ASCE)0733-9399(2010)136:2(254)
  9. 9. Jung H.J., Jang D.D., Koo J.H., Cho S.W. (2010b), Experimental Evaluation of a ‘Self-Sensing Capability of an Electromagnetic Induction System Designed for MR Dampers, Journal of Intelligent Material Systems and Structures, 21, 837–836.10.1177/1045389X10367837
  10. 10. Karnopp D.C., Crosby M.J., Harwood R.A. (1974), Vibration control using semi-active force generator, ASME Journal of Engineering for Industry, 96(2), 619–626.10.1115/1.3438373
  11. 11. Kittel C. (1996), Introduction to solid state physics, John Wiley & Sons, Inc., Eighth Edition.
  12. 12. Li Z., Zhuo L., Kuang J., Luhrs G. (2013a), Energy-Harvesting Shock Absorber with a Mechanical Motion Rectifier, Smart Materials and Structures, 22, 028008.10.1088/0964-1726/22/2/025008
  13. 13. Li Z., Zhuo L., Luhrs G., Lin L., Qin Y. (2013b), Electromagnetic Energy harvesting shock absorbers: design, modeling and road tests, IEEE Transactions Vehicle Technology, 62, 1065–74.10.1109/TVT.2012.2229308
  14. 14. Liao W.H., Chen C. (2010), Self-powered, sensing magnetorheo-logical dampers US Patent Application, 12/896, 760.
  15. 15. MTS System Corporation (2006), MTS 810 & 858 Material Testing Systems, Technical Documentation.
  16. 16. Ni Y.O., Chen Z., Or S.W. (2015), Experimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing, Journal of Engineering Mechanics, 141(7) 04015001.10.1061/(ASCE)EM.1943-7889.0000930
  17. 17. Peng G., Li W., Hu G., Alici G. (2011), Design and simulation of a self-sensing MR damper, 15th International Conference on Mechatronics Technology, 112–117.
  18. 18. Polytec Inc. (2005) OFV-505/503 Vibrometer Sensor Head, Technical Data, https://www.polytec.com.
  19. 19. RIGOL Technologies Inc. (2016), DP800 Series Programmable Linear DC Power Supply, Technical Data, https://www.rigol.com.
  20. 20. RIGOL Technologies Inc. (2015), DM3068 6 ½ digits Digital Multimeter, Technical Data, https://www.rigol.com.
  21. 21. Sapiński B. (2008), An experimental electromagnetic induction device for a magnetorheological damper, Journal of Theoretical and Applied Mechanics, 46, 4, 933–947.
  22. 22. Sapiński B. (2010), Vibration power generator for a linear MR damper, Smart Materials and Structures, 19, 105012.10.1088/0964-1726/19/10/105012
  23. 23. Sapiński B., Krupa S. (2013), Efficiency improvement in a vibration power generator for a linear MR damper: numerical study, Smart materials and Structures, 22, 045011.10.1088/0964-1726/22/4/045011
  24. 24. Sapinski B. (2014), Energy harvesting MR linear damper: prototyping and testing, Smart Materials and Structures, 23, 035021.10.1088/0964-1726/23/3/035021
  25. 25. Sapinski B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.10.1088/0964-1726/25/12/125017
  26. 26. STMicroelectronics (2017), STM32F405/415, STM32F407/417, TM32F427/437 and STM32F429/439 advanced ARM®-based 32-bit MCUs, RM0090 Reference manual, Rev. 15.
  27. 27. Wang D.H., Bai X.X., Liao W.H. (2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, 19, 105008.10.1088/0964-1726/19/10/105008
  28. 28. Wang D.H., Bai X.X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.10.1088/0964-1726/22/7/075001
  29. 29. Xinchun G., Yonghu H., Yi R., Hui L., Jinping Q. (2015), A novel self-powered MR damper: theoretical and experimental analysis, Smart Materials and Structures, 24, 105033.10.1088/0964-1726/24/10/105033
  30. 30. (2017), A novel velocity self-sensing magnetorheological damper: Design, fabricate, and experimental analysis, Journal of Intelligent Material Systems and Structures, 26, 527–540.
  31. 31. Zhu S.Y., Shen W.A., Xu Y.L., Lee W.C. (2012), Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing, Engineering Structures, 34, 198–212.10.1016/j.engstruct.2011.09.024
DOI: https://doi.org/10.2478/ama-2019-0019 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 135 - 145
Submitted on: Apr 12, 2019
Accepted on: Jun 28, 2019
Published on: Jul 25, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Maciej Rosół, Bogdan Sapiński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.