Have a personal or library account? Click to login
Mathematical Modelling of Stationary Thermoelastic State for a Plate with Periodic System of Inclusions and Cracks Cover

Mathematical Modelling of Stationary Thermoelastic State for a Plate with Periodic System of Inclusions and Cracks

Open Access
|Apr 2019

References

  1. 1. Brock L.M. (2016), Contours for planar cracks growing in three dimensions: Coupled thermoelastic solid (planar crack growth in 3D), Journal of Thermal Stresses, 39(3), 345–359.10.1080/01495739.2015.1125656
  2. 2. Cheesman B.A., Santare M.H. (2000), The interaction of a curved crack with a circular elastic inclusion, Int. J. Fract.,103, 259-278.10.1023/A:1007663913279
  3. 3. Chen H., Wang Q., Liu G., Sun J. (2016), Simulation of thermoe-lastic crack problems using singular edge-based smoothed finite element method, Int. J. of Mech. Sci., 115,116, 23-134.10.1016/j.ijmecsci.2016.06.012
  4. 4. Choi H.J. (2014), Thermoelastic interaction of two offset interfacial cracks in bonded dissimilar half-planes with a functionally graded interlayer, Acta Mechanica , 225(7),2111–2131.10.1007/s00707-013-1080-2
  5. 5. Elfakhakhre N.R.F., Nik L., Eshkuvatov N.M.A. (2017), Stress intensity factor for multiple cracks in half plane elasticity, AIP Conference, 1795(1).10.1063/1.4972154
  6. 6. Erdogan F., Gupta B.D., Cook T.S. (1973), The numerical solutions of singular integral equations, Methods of analysis and solutions of crack problems. Leyden: Noordhoff Intern. publ., 368-425.10.1007/978-94-017-2260-5_7
  7. 7. Havrysh V.I. (2015), Nonlinear boundary-value problem of heat conduction for a layered plate with inclusion, Phis.-chim. mechanica materialiv (Materials Science), 51(3), 331–339.10.1007/s11003-015-9846-4
  8. 8. Havrysh V.I. (2017) Investigation of temperature fields in a heat-sensitive layer with through inclusion, Phis.-chim.mechanica materialiv (Materials Science), 52(4), 514–521.10.1007/s11003-017-9984-y
  9. 9.Kit H.S., Chernyak M.S. (2010), Stressed state of bodies with thermal cylindrical inclusions an cracks (plane deformation), Phis.-chim. mechanica materialiv (Materials Science), 46(3), 315–324.10.1007/s11003-010-9292-2
  10. 10. Kit, G.S., Ivas’ko, N.M. (2013), Plane deformation of a semi-infinite body with a heat-active crack perpendicular to its boundary, Teoret. I prikl. Mehanika, 53(7), 30–37.
  11. 11. Matysiak S.J., Evtushenko A.A., Zelenjak V.М. (1999), Frictional heating of a half–space with cracks. I. Single or periodic system of subsurface cracks, Tribology Int., 32, 237-243.10.1016/S0301-679X(99)00042-0
  12. 12. Panasyuk V.V., Savruk M.P., Datsyshyn O.P. (1976), Distribution tense neighborhood of cracks in the plates and shells (in Russian), Kiev, Naukova dumka
  13. 13. Rashidova E.V., Sobol B.V. (2017), An equilibrium internal transverse crack in a composite elastic half-plane, Journal of Applied Mathmatics and Mechanics, 81(3), 236‒24710.1016/j.jappmathmech.2017.08.016
  14. 14. Savruk M.P., Zelenyak V.M.(1986), Singular integral equations of plane problems of thermal conductivity and thermoelasticity for a piecewise–uniform plane with cracks, Phis.-chim. mechanica materialiv (Materials Science), 22(3), 297–307.10.1007/BF00720495
  15. 15. Savruk M.P. (1981), Two-dimensional elasticity problem for bodies with cracks (in Russian), Kiev, Naukova dumka.
  16. 16. Sekine H. (1975), Thermal stress singularities at tips of a crack in a semi-infinite medium under uniform heat flow, Eng. Fract. Mech., 7 (4), 713-729.10.1016/0013-7944(75)90027-2
  17. 17. Sushko O.P. (2013), Thermoelastic state of a body with two coplanar thermally active circular cracks, Journal of Mathematical Sciences, 190(5), 725–739.10.1007/s10958-013-1283-z
  18. 18. Tweed I., Lowe S. (1979), The thermoelastic problem for a half-plane with an internal line crack, Int. J. Eng. Sci., 17(4), 357-363.10.1016/0020-7225(79)90071-5
  19. 19.Xiao Z..M., Chen B.J. (2001), Stress intensity factor for a Griffith crack interacting with a coated inclusion, Int. J. Fract., 108, 193-205.
  20. 20. Zelenyak B.M. (2015), Thermoelastic equilibrium of a three-layer circular hollow cylinder weakened by a crack, Phis.-chim. mechanica materialiv (Materials Science), 50(1), 14–19.
  21. 21. Zelenyak V.M. (2012), Thermoelastic interaction of a two–component circular inclusion with a crack in the plate, Phis.-chim. mechanica materialiv (Materials Science), Materials Science, 48(3), 301–307.10.1007/s11003-012-9506-x
  22. 22. Zelenyak, V.M., Kolyasa, L.I. (2016). Thermoelastic state of a half plane with curvilinear crack under the conditions of local heating, Phis.-chim. mechanica materialiv (Materials Science), 52(3), 315-322.10.1007/s11003-016-9959-4
DOI: https://doi.org/10.2478/ama-2019-0002 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 11 - 15
Submitted on: Nov 8, 2018
|
Accepted on: Mar 7, 2019
|
Published on: Apr 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Volodymyr Zelenyak, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.