Have a personal or library account? Click to login
Investigation of Gas Foil Bearings With an Adaptive and Non-Linear Structure Cover

Investigation of Gas Foil Bearings With an Adaptive and Non-Linear Structure

Open Access
|Apr 2019

References

  1. 1. Aksoy S., Aksit M.F. (2015), A fully coupled 3D thermo-elastohydrodynamics model for a bump-type compliant foil journal bearing, Tribology International, 82, 110–122.10.1016/j.triboint.2014.10.001
  2. 2. DellaCorte C. (2012), Oil-Free shaft support system rotordynamics: Past, present and future challenges and opportunities, Mechanical Systems and Signal Processing, 29, 67–76.10.1016/j.ymssp.2011.07.024
  3. 3. DellaCorte C., Radil K.C., Bruckner R.J., Howard A. (2008), Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings, Tribology Transactions, 51(3), 254–264.10.1080/10402000701772579
  4. 4. Enemark S., Savi M.A., Santos I.F. (2015), Experimental analyses of dynamical systems involving shape memory alloys, Smart Structures and Systems, 15(6), 1521–1542.10.12989/sss.2015.15.6.1521
  5. 5. Fanning C.E., Blanchet T.A. (2008), High-temperature evaluation of solid lubricant coatings in a foil thrust bearing, Wear, 265, 1076–1086.10.1016/j.wear.2008.02.009
  6. 6. Feng K., Hu J., Liu W., Zhao X., Li W. (2015), Structural characterization of a novel gas foil bearing with nested compression springs: analytical modeling and experimental measurement, ASME Journal of Engineering for Gas Turbines and Power, 138(1), 012504–11.10.1115/1.4031203
  7. 7. Gupta S., Filimonov D., Zaitsev V., Palanisamy T., El-Raghy T., Barsoum M.W. (2009), Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3, Wear, 267, 1490–1500.10.1016/j.wear.2009.03.021
  8. 8. Howard S.A. (1999), Rotordynamics and design methods of an oil-free turbocharger, Tribology Transactions, 42(1), 174–17910.1080/10402009908982205
  9. 9. Ji J.C., Hansen C.H., Zander A.C. (2008), Nonlinear dynamics of magnetic bearing systems, Journal of Intelligent Material Systems and Structures, 19(12), 1471–1491.10.1177/1045389X08088666
  10. 10. Kiciński J. (2015), The dynamics of microturbines lubricated using unconventional agents, Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(2), 369–377.10.1515/bpasts-2015-0041
  11. 11. Kiciński J., Żywica G. (2012), The numerical analysis of the steam microturbine rotor supported on foil bearings, Advances in Vibration Engineering, 11(2), 113–119.
  12. 12. Kosowski K., Piwowarski M., Stępień R., Włodarski W. (2018), Design and investigations of the ethanol microturbine, Archives of Thermodynamics, 39(2), 41–54.
  13. 13. Le Lez S., Arghir M., Frene J. (2007), Static and dynamic characterization of a bump-type foil bearing structure, Journal of Tribology, 129, 75–83.10.1115/1.2390717
  14. 14. Lubieniecki M., Roemer J., Martowicz A., Bagiński P., Żywica G., Uhl T. (2016), An experimental evaluation of the control methodology for distributed actuators integrated within a foil bearing, ICAST2016, 27th International Conference on Adaptive Structures and Technologies, New York, USA.
  15. 15. Peng J., Zhu K.-Q. (2005), Hydrodynamic characteristics of ER journal bearings with external electric field imposed on the contractive part, Journal of Intelligent Material Systems and Structures, 16(6), 493–499.10.1177/1045389X05052312
  16. 16. Shen C., Wang D., Liu Y., Kong F., Tse P.W. (2014), Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines, Smart Structures and Systems, 13(3), 453–471.10.12989/sss.2014.13.3.453
  17. 17. Tkacz E., Kozanecki Z., Kozanecka D., Łagodziński J. (2017), A self-acting gas journal bearing with a flexibly supported foil – Numerical model of bearing dynamics, International Journal of Structural Stability and Dynamics, 17(5), 1740012.10.1142/S0219455417400120
  18. 18. Urreta H., Leicht Z., Sanchez A., Agirre A., Kuzhir P., Magnac G. (2010), Hydrodynamic bearing lubricated with magnetic fluids, Journal of Intelligent Material Systems and Structures, 21(15), 1491–1499.10.1177/1045389X09356007
  19. 19. Von Osmanski S., Larsen J.S., Santos I.F. (2017), A fully coupled air foil bearing model considering friction – Theory & experiment, Journal of Sound and Vibration, 400, 660–676.10.1016/j.jsv.2017.04.008
  20. 20. Włodarski W. (2018), Experimental investigations and simulations of the microturbine unit with permanent magnet generator, Energy, 158, 59–71.10.1016/j.energy.2018.05.199
  21. 21. Wu R.Q., Zhang W., Yao M.H. (2018), Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness, Mechanical Systems and Signal Processing, 100, 113–134.10.1016/j.ymssp.2017.07.033
  22. 22. Zhao Y., Zhang B., An G., Liu Z., Cai L. (2016), A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles, Structural Engineering and Mechanics, 57(1), 141–159.10.12989/sem.2016.57.1.141
  23. 23. Żywica G. (2013), The dynamic performance analysis of the foil bearing structure, Acta Mechanica et Automatica, 7(1), 58–62.10.2478/ama-2013-0011
  24. 24. Żywica G., Bagiński P., Banaszek S. (2016a), Experimental studies on foil bearing with a sliding coating made of synthetic material, Journal of Tribology, 138(1), 011301.10.1115/1.4031396
  25. 25. Żywica G., Kiciński J., Bagiński P. (2016b), The static and dynamic numerical analysis of the foil bearing structure, Journal of Vibration Engineering & Technologies, 4(3), 213–220.
DOI: https://doi.org/10.2478/ama-2019-0001 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 5 - 10
Submitted on: Sep 7, 2018
|
Accepted on: Feb 28, 2019
|
Published on: Apr 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Grzegorz Żywica, Paweł Bagiński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.