Have a personal or library account? Click to login
Statistical Analysis of Human Heart Rhythm with Increased Informativeness Cover

Statistical Analysis of Human Heart Rhythm with Increased Informativeness

Open Access
|Jan 2019

References

  1. 1. Akaike H. (1974), A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(4), 716–723.10.1109/TAC.1974.1100705
  2. 2. Berkaya S.K., Uysal A.K., Gunal E.S, Ergin S., Gunal S., Gulmezoglu M.B. (2018), A survey on ECG analysis, Biomedical Signal Processing and Control, 43, 216-235.10.1016/j.bspc.2018.03.003
  3. 3. Bozhokin S.V., Suslova I.B. (2014), Wavelet Analysis of Non-stationary Signals in Medical Cyber-Physical Systems (MCPS). B S. Balandin, S. Andreev, & Y. Koucheryavy (Eds), Internet of Things, Smart Spaces and Next Generation Networks and Systems, Springer International Publishing.10.1007/978-3-319-10353-2_42
  4. 4. Brandão G.S., Sampaio A.A.C., Brandão G.S., Urbano J.J., Fonsêca N.T., Apostólico N., Oliveira E.F., Perez E.A., Almeida R.G., Dias I.S., Santos I.R., Nacif S.R., Oliveira L.V.F. (2014), Analysis of heart rate variability in the measurement of the activity of the autonomic nervous system: technical note, Manual Therapy, Posturology & Rehabilitation Journal, 12, 243-251.10.17784/mtprehabjournal.2014.12.197
  5. 5. Ciucurel C., Georgescu L., Iconaru E.I. (2018), ECG response to submaximal exercise from the perspective of Golden Ratio harmonic rhythm, Biomedical Signal Processing and Control, 40, 156-162.10.1016/j.bspc.2017.09.018
  6. 6. Coles S. (2001), Extreme values, regular variation and point processes, Springer, London.
  7. 7. Evaristo R.M., Batista A.M., Viana R.L., Iarosz K.C., Szezech J.D. Jr., Godoy M.F. (2018). Mathematical model with autoregressive process for electrocardiogram signals, Communications in Nonlinear Science and Numerical Simulation, 57, 415-421.10.1016/j.cnsns.2017.10.018
  8. 8. Foster F.G., Stuart A. (1954), Distribution-Free Tests in Time-Series Based on the Breaking of Records, Journal of the Royal Statistical Society. Series B (Methodological), 16(1), 1-22.10.1111/j.2517-6161.1954.tb00143.x
  9. 10. Fumagalli F., Silver A.E., Tan Q., Zaidi N., Ristagno G. (2018), Cardiac rhythm analysis during ongoing cardiopulmonary resuscitation using the Analysis During Compressions with Fast Reconfirmation technology, Heart Rhythm, 15(2), 248-255.10.1016/j.hrthm.2017.09.00328917561
  10. 11. Gadhoumi K., Do D., Badilini F., Pelter M.M., Hu X. (2018), Wavelet leader multifractal analysis of heart rate variability in atrial fibrillation, Journal of Electrocardiology, 51(6), S83-S87.10.1016/j.jelectrocard.2018.08.030626383230177367
  11. 12. Galeotti L., Scully C.G. (2018), A method to extract realistic artifacts from electrocardiogram recordings for robust algorithm testing, Journal of Electrocardiology, 51(6), S56-S60.10.1016/j.jelectrocard.2018.08.023777151230180996
  12. 13. Hammad M., Maher A., Wang K., Jiang F., Amrani M. (2018), Detection of abnormal heart conditions based on characteristics of ECG signals, Measurement, 125, 634-644.10.1016/j.measurement.2018.05.033
  13. 14. Isler Y., Narin A., Ozer M., Perc M. (2019), Multi-stage classification of congestive heart failure based on short-term heart rate variability, Chaos, Solitons & Fractals, 118, 145-151.10.1016/j.chaos.2018.11.020
  14. 15. Koichubekov B.K., Sorokina M.A., Laryushina Y.M., Turgunova L.G., Korshukov I.V. (2018), Nonlinear analyses of heart rate variability in hypertension, Annales de Cardiologie et d'Angéiologie, 67(3), 174-179.10.1016/j.ancard.2018.04.01429753421
  15. 16. Kotel’nikov S.A., Nozdrachev A.D., Odinak M.M., Shustov E.B., Kovalenko I.Yu., Davydenko V.Yu. (2002), Cardiac Rhythm Variability: Approaches to Mechanisms, Human Physiology, 28(1), 114-127.10.1023/A:1013972805012
  16. 17. Li J., Chen Ch., Yao Q., Zhang P., Wang J., Hu J., Feng F. (2018), The effect of circadian rhythm on the correlation and multifractality of heart rate signals during exercise, Physica A: Statistical Mechanics and its Applications, 509, 1207-1213.10.1016/j.physa.2018.06.021
  17. 18. Liddle A.R. (2007), Information criteria for astrophysical model selection, Monthly Notices of the Royal Astronomical Society: Letters, 377(1), 74-78.10.1111/j.1745-3933.2007.00306.x
  18. 19. Lupenko S., N. Lutsyk, Y. Lapusta. (2015), Cyclic linear random process as a mathematical model of cyclic signals, Acta Mechanica et Automatica, 9(4), 219-224.10.1515/ama-2015-0035
  19. 20. Lytvynenko I., Maruschak P., Lupenko S., Panin S. (2015), Segmentation and Statistical Processing of Geometric and Spatial Data on Self-Organized Surface Relief of Statically Deformed Aluminum Alloy, Applied Mechanics and Materials, 770, 288-293.10.4028/www.scientific.net/AMM.770.288
  20. 21. Mustaqeem A., Anwar SM, Khan AR., Majid M. (2017), A statistical analysis based recommender model for heart disease patients, International Journal of Medical Informatics, 108, 134-145.10.1016/j.ijmedinf.2017.10.00829132619
  21. 22. Napoli N.J., Demas M.W., Mendu S., Stephens C.L., Kennedy K.D, Harrivel A.R, Bailey R.E., Barnes L.E. (2018), Uncertainty in heart rate complexity metrics caused by R-peak perturbations, Computers in Biology and Medicine, 103, 198-207.10.1016/j.compbiomed.2018.10.009781498330384177
  22. 23. Schwarz G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464.10.1214/aos/1176344136
  23. 24. Serrano E., Figliola A. (2009), Wavelet Leaders: A new method to estimate the multifractal singularity spectra, Physica A: Statistical Mechanics and its Applications, 388(14), 2793-2805.10.1016/j.physa.2009.03.043
  24. 25. Sharma L.D., Sunkaria R.K. (2018), Stationary wavelet transform based technique for automated external defibrillator using optimally selected classifiers, Measurement, 125, 29-36.10.1016/j.measurement.2018.04.054
  25. 26. Shen C., Yu Z., Liu Z. (2015), The use of statistics in heart rhythm research: a review, Heart Rhythm, 12(6), 1376-1386.10.1016/j.hrthm.2015.03.01626002137
  26. 27. Sugiura N. (1978). Further analysts of the data by akaike’ s information criterion and the finite corrections. Communications in Statistics - Theory and Methods, 7(1), 13-26.10.1080/03610927808827599
  27. 28. Wang Y., Wei S., Zhang S., Zhang Y., Zhao L., Liu C., Murray A. (2018), Comparison of time-domain, frequency-domain and nonlinear analysis for distinguishing congestive heart failure patients from normal sinus rhythm subjects, Biomedical Signal Processing and Control, 42, 30-36.10.1016/j.bspc.2018.01.001
DOI: https://doi.org/10.2478/ama-2018-0047 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 311 - 315
Submitted on: Jul 10, 2018
Accepted on: Dec 20, 2018
Published on: Jan 3, 2019
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Serhii Lupenko, Nadiia Lutsyk, Oleh Yasniy, Łukasz Sobaszek, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.