Have a personal or library account? Click to login
Comparison Analysis of Cockroft – Latham Criterion Values of Commercial Plasticine and C45 Steel Cover

Comparison Analysis of Cockroft – Latham Criterion Values of Commercial Plasticine and C45 Steel

Open Access
|Jan 2019

References

  1. 1. Altan T., Breitling J., Taupin E., Wu W-T. (1996), Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, Journal of Materials Processing Technology, 58, 68-78.10.1016/0924-0136(96)02288-1
  2. 2. Altan T., Vazquez V., (2000), New Concepts in die design - physical and computer modeling applications, Journal of Materials Processing Technology, 98, 212-223.10.1016/S0924-0136(99)00202-2
  3. 3. Antolik Ł., (2014), Methodology of Fatigue Cracks Detection in Railway Axles in Comparison with European Standards Requirements (in Polish), Problemy kolejnictwa, 165, 7-19.
  4. 4. Arikawa T., Kakimoto H., (2014), Prediction of surface crack in hot forging by numerical simulation, Procedia Engineering, 81, 474-479.10.1016/j.proeng.2014.10.025
  5. 5. Asai K., Kitamura K., (2014), Estimation of frictional property of lubricants for hot forging of steel using low-speed ring compression test, Procedia Engineering, 81,1970-1975.10.1016/j.proeng.2014.10.266
  6. 6. Assempour A., Farahani S., Naybodi A., (2012). A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process, Journal of Materials Processing Technology, 212(1), 249-261.10.1016/j.jmatprotec.2011.09.010
  7. 7. Assempour A., Razi S., (2002). Determination of load and strain-stress distributions in hot closed die forging using the plasticine modeling technique, Archive of SID, 2(15), 167-172.
  8. 8. Bariani P.F., Bylya O., Ghiotti A., Novella M.F., (2014), Modelling of AA6082 Ductile Damage Evolution under Hot Rolling Conditions, Procedia Engineering, 81, 221-226.10.1016/j.proeng.2014.09.154
  9. 9. Bruschi S., Davey K., Krishnamurthy B., (2017), Physical modelling for metal forming processes, Procedia Engineering, 207, 1075-1080.10.1016/j.proeng.2017.10.1133
  10. 10. Charoesunk K., Panich S., Uthaisangsuk V., (2017). Damage initiation and fracture loci for advances high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology, 248, 218-235.10.1016/j.jmatprotec.2017.05.035
  11. 11. Cherkashina T., Mazur I., (2012), Mathematical and Physical Modeling of Soft Cobbing Process of Hot Rolling Steels, Material Science Forum, 704-705, 160-164.10.4028/www.scientific.net/MSF.704-705.160
  12. 12. Cockroft M.G., Latham D.J, (1968). Ductility and the workability of metals, Journal of the Institute of Metals, 96, 33-39.
  13. 13. Derpenski L., Seweryn A.,Szusta J., (2018), Damage accumulation and ductile fracture modeling of notched specimens under biaxial loading at room temperature, International Journal of Solids and Structures, 134, 1-19.10.1016/j.ijsolstr.2017.10.028
  14. 14. Dziubinska A., Gontarz A., (2015), A new method for producing magnesium alloy twin-rib aircraft brackets, Aircraft Engineering and Aerospace Technology, 2(87), 180-188.10.1108/AEAT-10-2013-0184
  15. 15. Eivani A. R., Jafarian H. R.,Mirghasemi S. M., Seyedein S. H. (2018), A comparison between routine vs. normalized Cockroft-Latham Fracture criteria for prediction of fracture during equal channel angular pressing, Engineering Fracture Mechanics, 199, 721-729.10.1016/j.engfracmech.2018.07.016
  16. 16. Fu M. W., Li H., Lu J., Yang H., (2011), Ductile fracture: Experiments and computations, International Journal of Plasticity, 27, 147-180.10.1016/j.ijplas.2010.04.001
  17. 17. Fuertes J. P., León J., Luis C. J., Luri R., Puertas I., Salcedo D., (2015), Comparative study of the damage attained with different specimens by FEM, Procedia Engineering, 132, 319-325.10.1016/j.proeng.2015.12.501
  18. 18. Galan I. S., Perig A.V., (2017), The experimental verification of the known flow line models describing local flow during ECAE (ECAP), Letters on materials, 7(3), 209-217.10.22226/2410-3535-2017-3-209-217
  19. 19. Gontarz A., Piesiak J., (2010), Crack model according to Cockroft-Latham criterion for magnesium alloy MA2 in hot forming conditions (in Polish), XXI(4), 217-227.
  20. 20. Gontarz A., Winiarski G., (2015), Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve, Archives of Metallurgy and Materials, 60, 1917-1921.10.1515/amm-2015-0326
  21. 21. Kowalczyk L., (1995), Physical modeling of metal forming processes (in Polish),Technologii Eksploatacji, Radom.
  22. 22. Lis K., Pater Z., Walczuk P., Wojcik L.,(2018), Preliminary analysis of a rotary compression test, Adv. Sci. Technol. Res. J, 12 (2), 77-82.10.12913/22998624/86812
  23. 23. Lis K., Pater Z., Wojcik L.,(2016), Plastometric tests for plasticine as physical modelling material, Open Engineering, 6, 653-659.10.1515/eng-2016-0093
  24. 24. Mizuno K., Komori K., (2009), Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay, Journal of Materials Processing Technology, 209, 4994-5001.10.1016/j.jmatprotec.2009.01.022
  25. 25. Moon Y.H., Van Tyne C.J., (2000), Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings, Journal of Materials Processing Technology, 99, 185-19610.1016/S0924-0136(99)00417-3
  26. 26. Pater Z., Wojcik L.,(2017), Physical analysis of cross-wedge rolling process of a stepped shaft, Adv. Sci. Technol. Res. J., 11 (4), 60-67.10.12913/22998624/75966
  27. 27. Pieres F. M. A., Song N., Wu S., (2016), Numerical analysis of damage evolution form materials with tension - compression asymmetry, Procedia Structural Integrity, 1, 273-280.10.1016/j.prostr.2016.02.037
  28. 28. Rasty J., Sofuoglu H., (2000), Flow behaviour of plasticine used in physical modeling of metal forming process, Tribology International, 33, 523-529.10.1016/S0301-679X(00)00092-X
DOI: https://doi.org/10.2478/ama-2018-0044 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 286 - 293
Submitted on: Jan 11, 2018
|
Accepted on: Dec 18, 2018
|
Published on: Jan 3, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Łukasz Wójcik, Zbigniew Pater, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.