Have a personal or library account? Click to login
Data Mining Techniques as a Tool in Neurological Disorders Diagnosis Cover

Data Mining Techniques as a Tool in Neurological Disorders Diagnosis

Open Access
|Oct 2018

References

  1. 1. Acquarelli J., The Netherlands Brain Bank, Bianchini M., Marchiori E. (2016), Discovering Potential Clinical Profiles of Multiple Sclerosis from Clinical and Pathological Free Text Data with Constrained Non-negative Matrix Factorization, In: Squillero G., Burelli P. (editors), Applications of Evolutionary Computation, Lecture Notes in Computer Science, Springer, Cham, 9597, 169–183.10.1007/978-3-319-31204-0_12
  2. 2. Bejarano H.B., Bianco M., Gonzalez-Moron D. (2011), Computational classifiers for predicting the short-term course of Multiple Sclerosis, BMC Neurology, 11:67.10.1186/1471-2377-11-67311810621649880
  3. 3. Bejarano H.B., Segura V., Villoslada P. (2013), Data mining in multiple sclerosis: computational classifiers. Introduction and methods (Part I), Revista Española de Esclerosis Múltiple, 5, 5–15.
  4. 4. Carreiro A.V., Anunciação O., Carriço J.A., Madeira S.C. (2011), Biclustering-Based Classification of Clinical Expression Time Series: A Case Study in Patients with Multiple Sclerosis, In: Rocha MP., Rodríguez JMC., Fdez-Riverola F, Valencia A. (editors), 5th International Conference on Practical Applications of Computational Biology & Bioinformatics, Advances in Intelligent and Soft Computing, Springer, Berlin, Heidelberg, 93.10.1007/978-3-642-19914-1_31
  5. 5. Dardzinska A. (2013), Action rules mining, Springer-Verlag, Berlin.10.1007/978-3-642-35650-6
  6. 6. Dardzinska A., Romaniuk A. (2016), Mining of Frequent Action Rules, In: Ryżko D, Gawrysiak P, Kryszkiewicz M, Rybiński H. (editors), Machine Intelligence and Big Data in Industry, Studies in Big Data, Springer, Cham, 19, 87-95.10.1007/978-3-319-30315-4_8
  7. 7. Han J., Kamber M. (2006), Data mining. Concepts and Techniques, 2nd ed, Elsevier, San Francisco.
  8. 8. Jacobs L.K., Sapers B.L. (2011), Neurological Disease, In: Cohn S. (editor), Perioperative Medicine, Springer, London.10.1007/978-0-85729-498-2_29
  9. 9. Kozubski W., Liberski P. (2003), Neurological diseases (in Polish), Wydawnictwo Lekarskie, Warsaw.
  10. 10. Larose D.T. (2005), Discovering knowledge in data. An introduction to data mining, John Wiley & Sons, Inc., New Jersey.10.1002/0471687545
  11. 11. Lavrač N., Zupan B. (2010) Data Mining in Medicine, In: Maimon O., Rokach L. (editors), Data Mining and Knowledge Discovery Hand-book, Springer, Boston.10.1007/978-0-387-09823-4_58
  12. 12. Ludwin S.K., Antel J., Arnold D.L. (2016), Multiple Sclerosis, In: Pfaff D., Volkow N. (editors), Neuroscience in the 21st Century, Springer, New York.10.1007/978-1-4939-3474-4_103
  13. 13. Pappa G.L., Freitas A.A. (2010), Automating the design of data mining algorithms. An evolutionary computation approach, Springer –Verlag, Berlin.10.1007/978-3-642-02541-9
  14. 14. Raś Z.W., Dardzińska A. (2008a), Action Rules Discovery Based on Tree Classifiers and Meta-actions, In: Rauch J., Raś Z.W., Berka P., Elomaa T. (editors), Foundations of Intelligent Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5722.10.1007/978-3-642-04125-9_10
  15. 15. Raś Z.W., Dardzińska A. (2008b), Action Rules Discovery without Pre-existing Classification Rules, In: Chan C.C., Grzymala-Busse J.W., Ziarko W.P. (editors), Rough Sets and Current Trends in Computting, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5306.10.1007/978-3-540-88425-5_19
  16. 16. Raś Z.W., Dardzinska A., Tsay L.-S., Wasyluk H. (2008), Association Action Rules, IEEE/ICDM Workshop on Mining Complex Data (MCD 2008), 283–290.10.1109/ICDMW.2008.66
  17. 17. Raś Z.W., Wieczorkowska A. (2000), Action-Rules: How to Increase Profit of a Company, In: Zighed D.A., Komorowski J., Żytkow J. (editors), Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1910.10.1007/3-540-45372-5_70
  18. 18. Rodríguez J.P., Aritz P., Arteta D., Tejedor D., Lozano J.A. (2012), Using Multi-Dimensional Bayesian Network Classifiers to Assist the Treatment of Multiple Sclerosis, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 42, 1705–1715.10.1109/TSMCC.2012.2217326
  19. 19. Snarska K.K., Bachórzewska-Gajewska K., Kapica-Topczewska K., Drozdowski W., Chorąży M., Kułakowska A., Małyszko J. (2016), Hyperglycemia and diabetes have different impacts on out-come of ischemic and hemorrhagic stroke, Archives of Medical Science, 13(1), 100–108.10.5114/aoms.2016.61009520636428144261
  20. 20. Triantaphyllou E., Felici G. (editors) (2006), Data mining and knowledge discovery approaches based on rule induction techniques, Springer Science+Business Media, New York.10.1007/0-387-34296-6
  21. 21. Trochimczyk A., Chorąży M., Snarska K.K. (2017), An Analysis of Patient Quality of Life after Ischemic Stroke of the Brain, The Journal of Neurological and Neurosurgical Nursing, 6(2), 44–54.10.15225/PNN.2017.6.2.1
  22. 22. World Health Organization (2006), Neurological disorders: public health challenges, Geneva.
  23. 23. Yamashita T., Deguchi K., Sehara Y., Lukic-Panin V., Zhang H., Kamiya T., Abe K. (2009), Therapeutic strategy for ischemic stroke, Neurochemical Research, 34, 707–710.10.1007/s11064-008-9842-218770029
DOI: https://doi.org/10.2478/ama-2018-0033 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 217 - 220
Submitted on: Jan 25, 2018
Accepted on: Sep 19, 2018
Published on: Oct 16, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Małgorzata Zdrodowska, Agnieszka Dardzińska, Monika Chorąży, Alina Kułakowska, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.