Have a personal or library account? Click to login
Full-Scale Dynamometer Test of Composite Railway Brake Shoes – Study on the Effect of the Reinforcing Fibre Type Cover

Full-Scale Dynamometer Test of Composite Railway Brake Shoes – Study on the Effect of the Reinforcing Fibre Type

Open Access
|Oct 2018

References

  1. 1. Abbasi S., Teimourimanesh S., Vernersson T., Sellgren U., Olofsson U., Lundén R. (2014), Temperature and thermoelastic instability at tread braking using cast iron friction material, Wear, 314, 171–180.10.1016/j.wear.2013.11.028
  2. 2. Alnaqi A.A., Barton D.C., Brooks, P.C. (2015), Reduced scale thermal characterization of automotive disc brake, Applied Thermal Engineering, 75, 658–668.10.1016/j.applthermaleng.2014.10.001
  3. 3. Bijwe J. (1997), Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials – a review, Polymer composites, 18, 378–396.10.1002/pc.10289
  4. 4. Chan D.S.E.A., Stachowiak G.W. (2004), Review of automotive brake friction materials, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218, 953–966.10.1243/0954407041856773
  5. 5. de Vos P. (2016), Noise in europe: State of the art report, Union Internationale des Chemins de fer, Paris.
  6. 6. Desplanques Y., Roussette O., Degallaix G., Copin R., Berthier Y. (2007), Analysis of tribological behaviour of pad–disc contact in railway braking: Part 1. Laboratory test development, compromises between actual and simulated tribological triplets, Wear, 262, 582–591.10.1016/j.wear.2006.07.004
  7. 7. European Commission (2013), Commission Regulation (EU) No 321/2013 concerning the technical specification for interoperability relating to the subsystem rolling stock freight wagons of the rail system in the European Union and repealing Decision 2006/861/EC (WAG TSI). Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1437553513377&uri=CELEX:02013R0321-20150701
  8. 8. European Railway Agency (2015), Friction elements for wheel tread brakes for freight wagons (ERA/TD/2013-02/INT v 3.0). Retrieved from http://www.era.europa.eu/Document-Register/Documents/ERA-TD-2013-02-INT%203.0.pdf
  9. 9. Grzes P., Oliferuk W., Adamowicz A., Kochanowski K., Wasilewski P., Yevtushenko A.A. (2016), The numerical–experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking, International Communications in Heat and Mass Transfer, 75, 1–6.10.1016/j.icheatmasstransfer.2016.03.017
  10. 10. Kim S.J., Cho M.H., Lim D.S., Jang H. (2001), Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear, 251, 1484–1491.10.1016/S0043-1648(01)00802-X
  11. 11. Konowrocki R., Kukulski J., Walczak S., Groll W. (2013), Dynamic interaction of cleansing brake insert for high speed train – experimental investigation, Prace Naukowe Politechniki Warszawskiej, Transport, 98, 279–289 (in Polish).
  12. 12. Krupa M. (2008), Influence of temperature on value of friction coefficient in friction brakes, Scientific Papers of Silesian University of Technology, Transport, 64, 151–157 (in Polish).
  13. 13. Petersson M., Vernersson T. (2002), Noise-related roughness on tread braked railway wheels-experimental measurements and numerical simulations, Wear, 253, 301–307.10.1016/S0043-1648(02)00121-7
  14. 14. Sim L., Ramanan S.R., Ismail H., Seetharamu K.N., Goh T.J. (2005), Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochimica Acta, 430, 155–165.10.1016/j.tca.2004.12.024
  15. 15. Singh T., Patnaik A., Chauhan R., Rishiraj A. (2017), Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials, Journal of King Saud University-Engineering Sciences, 29, 183–190.10.1016/j.jksues.2015.06.002
  16. 16. Union Internationale des Chemins de fer (2010), Brakes – Brakes with composite brake blocks – General conditions for certification of composite brake blocks (UIC Leaflet 541–4, 4th edition).
  17. 17. Wasilewski P. (2017), Experimental study on the effect of formulation modification on the properties of organic composite railway brake shoe, Wear, 390, 283–294.10.1016/j.wear.2017.08.007
  18. 18. Wasilewski P., Kuciej M. (2018), Comparative study on the effect of fibre substitution on the properties of composite railway brake shoe, Proceedings of the International Scientific Conference BALTTRIB’2017, 1, 172–177.10.15544/balttrib.2017.31
  19. 19. Yevtushenko A., Kuciej M., Grześ P., Wasilewski P. (2017),Temperature in the railway disc brake at a repetetive short-term mode of braking, International Communications in Heat and Mass Transfer, 84, 102–109.10.1016/j.icheatmasstransfer.2017.04.007
DOI: https://doi.org/10.2478/ama-2018-0031 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 204 - 208
Submitted on: Jun 4, 2018
Accepted on: Sep 7, 2018
Published on: Oct 16, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Piotr Wasilewski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.