Have a personal or library account? Click to login
Applicability of Notch Stress-Strain Correction Methods to Low-Cycle Fatigue Life Prediction of Turbine Rotors Subjected to Thermomechanical Loads Cover

Applicability of Notch Stress-Strain Correction Methods to Low-Cycle Fatigue Life Prediction of Turbine Rotors Subjected to Thermomechanical Loads

Open Access
|Oct 2018

Abstract

The paper analyses the possibility of using analytical methods of notch stress-strain correction in low-cycle fatigue life predictions of steam turbine rotors operating under non-isothermal conditions. The assessment was performed by comparing strain amplitudes calculated using the Neuber and Glinka-Molski methods and those predicted by the finite element analysis (FEA) employing elastic-plastic material model. The results of investigations reveal that the Neuber method provides an upper bound limit, while the Glinka-Molski method results in a lower bound limit of strain amplitude. In the case of rotor heat grooves, both methods provide equally accurate results of notch strain amplitude and are suited to estimating lower and upper bound limits of low-cycle fatigue life under non-isothermal conditions.

DOI: https://doi.org/10.2478/ama-2018-0027 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 179 - 185
Submitted on: Apr 5, 2017
Accepted on: Jul 26, 2018
Published on: Oct 16, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Mariusz Banaszkiewicz, Waldemar Dudda, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.