Have a personal or library account? Click to login
Magnetorheological Self-Powered Vibration Reduction System with Current Cut-Off: Experimental Investigation Cover

Magnetorheological Self-Powered Vibration Reduction System with Current Cut-Off: Experimental Investigation

Open Access
|Jul 2018

References

  1. 1. Ahamed R., Ferdaus Md. M., Li Y. (2016), Advancement in energy harvesting magneto-rheological fluid damper: A review, Korea-Australia Rheology Journal, 28(4), 355−379.10.1007/s13367-016-0035-2
  2. 2. Chen C., Liao W.H. (2012), A self-sensing magnetorheological damper with power generation, Smart Materials and Structures, 21, 025014.10.1088/0964-1726/21/2/025014
  3. 3. Choi K.M., Jung H. J., Lee H. J, Cho S.W. (2007), Feasibility study of smart passive control system equipped with electromagnetic induction device, Smart Materials and Structures, 16, 2323-2329.10.1088/0964-1726/16/6/036
  4. 4. Choi Y.T., Werely N.M (2009), Self-powered magnetorhelogical dampers, Journal of Vibration and Acoustics, 131, 44−50.10.1115/1.3142882
  5. 5. Jastrzębski Ł., Sapiński B. (2016), Electrical interface for a self-powered MR damper-based vibration reduction system, Acta Mechanica et Automatica, 10(3), 165−172.10.1515/ama-2016-0025
  6. 6. Sapiński B., Snamina J., Jastrzębski Ł., Staśkiewicz A., (2011), Laboratory stand for testing of self-powered vibration reduction systems, Journal of Theoretical and Applied Mechanics, 49(4), 1169–1181.
  7. 7. Sapiński B. (2008), An experimental electromagnetic induction device for a magnetorheological damper, Journal of Theoretical and Applied Mechanics, 46(4), 933−947.
  8. 8. Sapiński B. (2010), Vibration power generator for a linear MR damper, Smart Materials and Structures, 19, 105012.10.1088/0964-1726/19/10/105012
  9. 9. Sapiński B. (2011), Experimental study of a self-powered and sensing MR damper-based vibration control system, Smart Materials and Structures, 20, 105007.10.1088/0964-1726/20/10/105007
  10. 10. Sapiński B., Rosół M., Jastrzębski Ł. (2011), Charakterystyki semiaktywnego układu redukcji drgań z odzyskiem energii, Pomiary, Automatyka, Kontrola, 57(5), 502−506.
  11. 11. Sapiński B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.10.1088/0964-1726/25/12/125017
  12. 12. Wang D.H., Bai X.X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.10.1088/0964-1726/22/7/075001
  13. 13. Wang D.H., Bai X.X., Liao W.H. (2009), Principle, design and modeling of an integrated relative displacement magnetorheological damper based on electromagnetic induction, Smart Materials and Structures, 18, 095025.10.1088/0964-1726/18/9/095025
  14. 14. Xinchun G., Yonghu H., Yi R., Hui L., Jinping O. (2015), A novel self-powered MR damper: Theoretical and experimental analysis, Smart Materials and Structures, 24, 105033.10.1088/0964-1726/24/10/105033
  15. 15. Zhu S.Y., Shen W.A., Xu Y.L., Lee W.C. (2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, 34, 198−212.10.1016/j.engstruct.2011.09.024
DOI: https://doi.org/10.2478/ama-2018-0015 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 96 - 100
Submitted on: Jan 25, 2018
Accepted on: May 20, 2018
Published on: Jul 17, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Łukasz Jastrzębski, Bogdan Sapiński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.