Have a personal or library account? Click to login
Image Processing Techniques for ROI Identification in Rheumatoid Arthritis Patients from Thermal Images Cover

Image Processing Techniques for ROI Identification in Rheumatoid Arthritis Patients from Thermal Images

Open Access
|Apr 2018

References

  1. 1. Afshar S., Sheehan M. (2017), Applying infrared thermography and image analysis to dilute 2-phase particulate systems: Hot Particle Curtains, Energy Procedia, 110, 408-413.10.1016/j.egypro.2017.03.161
  2. 2. Barcelos Z.E., Caminhas W.M., Ribeiro E., Pimenta E.M., Palhares R.M. (2014), A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images, Sensors, 14, 21950-21967.10.3390/s141121950
  3. 3. Bezerra H.G., Attizzani G.F., Sirbu V., Musumeci G., Lortkipanidze N., Fujino Y., Wang W., Nakamura S., Erglis A., Guagliumi G., Costa M.A. (2013), Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention, JACC Cardiovasc Interv., 6(3), 228-36.10.1016/j.jcin.2012.09.017
  4. 4. Cojocaru M., Cojocaru I.M., Silosi I., Vrabie C.D., Tanasescub R., (2010), Extra-articular manifestations in rheumatoid arthritis; Maedica (Buchar), 5(4), 286–291.
  5. 5. Dey N., Ashour A.S., Chakraborty S., Banerjee S., Gospodinova E., Gospodinov M., Hassanien A.E. (2017), Watermarking in biomedical signal processing, Intelligent Techniques in Signal Processing for Multimedia Security, Dey N, Santhi V (eds); Springer International Publishing, 345-369.10.1007/978-3-319-44790-2_16
  6. 6. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.A., Sillero-Quintana M. (2015), Classification of factors influencing the use of infrared thermography in humans: a review, Infrared Physics & Technology 71, 28–55.10.1016/j.infrared.2015.02.007
  7. 7. Gabriel S.E. (2001), The epidemiology of rheumatoid arthritis, Rheum Dis Clin North Am., 27(2), 269–81.10.1016/S0889-857X(05)70201-5
  8. 8. Herman C., Pirtini Cetingul M. (2011, Quantitative visualization and detection of skin cancer using dynamic thermal imaging, J. Vis. Exp., 51, 1-4.10.3791/2679319710821587160
  9. 9. Ihnatouski M.I. (2000), Methods of segmentation of AFM and STM images. Recognition and description of cluster surface objects in the nanoscale IV Belarusian seminar on scanning probe microscopy (SPM-4). V.A. Belyi Metal Polymer Research Institute: 122-126.
  10. 10. John H.A., Niumsawatt V., Rozen W.M., Whitaker I.S. (2016), Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review, Gland Surg, 5(2), 122-132.
  11. 11. Jones B.F. (1998), A re-appraisal of the use of infrared thermal image analysis in medicine, IEEE Trans Med Imaging, 17,1019–27.10.1109/42.74663510048859
  12. 12. Kaczmarek M., Nowakowski A. (2016), Active IR-thermal imaging in medicine, J Nondestruct Eval, 35(19), 1-16.10.1007/s10921-016-0335-y
  13. 13. Kovalev V., Petrou M. (1996), Multidimensional co-occurrence matrices for object recognition and matching, Graphical Models and Image Processing., 58(3), 187-197.10.1006/gmip.1996.0016
  14. 14. Lahiri B.B., Bagavathiappan S., Jayakumar T. (2012), Medical applications of infrared thermography, A review, Infrared Physics & Technology, 55(4), 221-235.10.1016/j.infrared.2012.03.007711078732288544
  15. 15. Ludwig N., Formenti D., Gargano M., Alberti G. (2014), Skin temperature evaluation by infrared thermography: comparison of image analysis methods, Infrared Physics & Technology, 62,1-6.10.1016/j.infrared.2013.09.011
  16. 16. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2014), Problems of cardiosurgery wound healing evaluation, Proceedings of QIRT, 1–9.
  17. 17. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2015), A new diagnostic method for evaluation of cardiosurgery wound healing, JQIRT, 1–16.10.1080/17686733.2015.1077543
  18. 18. Purslow C., Wolffsohn J.S., Santodomingo-Rubido J. (2005), The effect of contact lens wear on dynamic ocular surface temperature, Contact Lens & Anterior Eye, 28, 29–36.10.1016/j.clae.2004.10.00116318832
  19. 19. Renkielska A., Kaczmarek M., Nowakowski A., Grudzinski J., Czapiewski P., Krajewski A., Grobelny I. (2014), Active dynamic infrared thermal imaging in burn depth evaluation, J. Burn Care Res, 35(5), 294–303.10.1097/BCR.000000000000005925144810
  20. 20. Renkielska A., Nowakowski A., Kaczmarek M., Ruminski J. (2006), Burn depths evaluation based on active dynamic IR thermal imaging—a preliminary study, Burns, 32, 867–875.10.1016/j.burns.2006.01.02416997482
  21. 21. Ring E.F.J. (1998), Progress in the measurement of human body temperature, IEEE Eng Med Biol, 17, 19–24.10.1109/51.6879599672806
  22. 22. Tattersall G.J. (2016), Infrared thermography: non-invasive window into thermal physiology, Comp Biochem Physiol A Mol Integr Physiol, 202, 78-98.10.1016/j.cbpa.2016.02.02226945597
  23. 23. Wasilewska A. (2017), Advantages of active over passive thermography in terms of applying in medicine, Scientific and didactic equipment, 22(2), 88-93.
  24. 24. Wasilewska A., Pauk J. (2017), Safety conditions in dynamic IT examinations of rheumatoid arthritis lesions, Scientific and didactic equipment, 22(3), 205-214.
DOI: https://doi.org/10.2478/ama-2018-0008 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 49 - 53
Submitted on: Oct 2, 2017
Accepted on: Mar 9, 2018
Published on: Apr 4, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Agnieszka Wasilewska, Jolanta Pauk, Mikhail Ihnatouski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.